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ABSTRACT 
 
 
 

This work accomplishes signal denoising using the Bootstrap method when the 

additive noise is Gaussian. The noisy signal is separated into frequency bands using the 

Fourier or Wavelet transform. Each frequency band is tested for Gaussianity by 

evaluating the kurtosis. The Bootstrap method is used to increase the reliability of the 

kurtosis estimate. Noise effects are minimized using a hard or soft thresholding scheme 

on the frequency bands that were estimated to be Gaussian. The recovered signal is 

obtained by applying the appropriate inverse transform to the modified frequency bands. 

The denoising scheme is tested using three test signals. Results show that FFT-based 

denoising schemes perform better than WT-based denoising schemes on the stationary 

sinusoidal signals, whereas WT-based schemes outperform FFT-based schemes on    

chirp type signals. Results also show that hard thresholding never outperforms soft 

thresholding; at best its performance is similar to soft thresholding. 
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EXECUTIVE SUMMARY 
 
 

The main goal of this thesis was to develop a denoising scheme to recover signals 

that are distorted by additive white Gaussian noise, regardless of the signal’s sperctral 

content. Two approaches were investigated, a short-time Fourier transform and a wavelet 

transform-based approach. Both transforms are used to decompose a signal into several 

frequency bands and to minimize the noise in each band. Each frequency band content is 

tested for Gaussianity, which is accomplished by investigating the signal’s kurtosis. It is 

well known that the signal kurtosis is equal to three only when the signal is Gaussian with 

zero mean. Therefore this parameter can help to provide a reliable determination whether 

or not a data sequence is Gaussian. However, the kurtosis estimate of a short data 

segment is not always reliable. The Bootstrap method is used in the kurtosis estimation to 

overcome this difficulty. The Bootstrap is a statistical scheme, which improves the 

reliability of a parameter estimate in situations where conventional techniques are not 

valid because of short data length issues. The Bootstrap uses data sequences that have the 

same length as the original signal, but are obtained by randomly resampling the data 

using replacement. These resampling is done many times and each data set is treated as 

repeated experiment. Then, the parameter of interest is estimated for each of these 

resampled sequences, to obtain a statistic for the parameter of interest. This resulting 

statistic can then be used to perform hypothesis tests on the parameter value. 

If the band is estimated to be Gaussian (i.e., the noise is dominant), then 

thresholding is applied to the band to minimize the noise effects. Two thresholding 

techniques are considered, hard and soft threshold. Hard thresholding coefficients are 0 

for Gaussian data and 1 for non-Gaussian data. Whereas soft thresholding coefficients are 

obtained by considering the data’s closeness to Gaussianity. The closer to being Gaussian 

the band specific data is, the smaller the soft thresholding coefficients are and vice versa. 

The denoised signal is obtained by applying the appropriate inverse transformation. 

Three different test signal types are selected to investigate the performances: a 

sinusoid, a chirp with constant amplitude, and a chirp with an RC time constant-like 



 xvi 

amplitude increase. The mean square error (MSE) and a distance measure defined 

between original and recovered signals are selected to compare performances. Results 

show FFT-based denoising schemes perform better than WT-based denoising schemes on 

the stationary sinusoid signal type, whereas WT-based schemes outperform FFT-based 

schemes on chirp type signals. Finally, results show that the soft thresholding scheme 

always performs at least as well as or better than the hard thresholding one.  
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I. INTRODUCTION 

In many data transmission and storage systems, noise gets introduced into data, 

which reduces the signal quality. As a result, various filtering techniques have been 

designed to suppress noise contributions in order to improve the overall signal quality. 

Fourier and Wavelet transforms decompose a noisy signal into several frequency 

bands. Traditional filter design methods have requirements on the frequency, magnitude 

and phase of the signal such as passband ripple, stopband attenuation, transition width, 

and phase constraints. The assumption behind these design criteria is that the signal is 

restricted to be in a certain frequency band and that the frequencies outside this specific 

band are treated as distortion. Note that this paradigm breaks down when signal and 

distortion terms overlap in frequency. 

Denoising attempts to remove the noise and to recover the original signal 

regardless of the signal’s frequency content. The basic idea is to look at each frequency 

band of interest and to minimize its noise effect by retaining the dominant component. 

The band is left untouched when the signal is dominant so as not to lose the signal 

component, while thresholding is applied when the noise is dominant. 

This thesis discusses a denoising scheme that implements frequency band specific 

thresholding schemes using the Bootstrap method and the kurtosis. Chapter 2 presents the 

processing techniques and the Bootstrap method. Chapter 3 discusses the proposed 

denoising scheme. Simulation results are presented in Chapter 4. Finally, Chapter 5 

presents conclusions. 
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II. BACKGROUND 

A. PROCESSING TECHNIQUES 

Signal processing allows users to extract relevant information from a given signal. 

When the raw data does not allow extracting the desired information, transformations to 

another domain may be performed to do so. The most common transformation types are 

the Fourier and Wavelet transforms, which are discussed in the following two sections. 

1. Fourier Analysis 

Fourier analysis allows the representation of a given signal as a linear 

combination of complex sinusoids with different frequencies. For periodic signals this is 

called the Fourier Series. This representation becomes extended to the Fourier 

Transform when the signal is aperiodic. Both representations are discussed in the 

following subsections. 

a Fourier Series 

A periodic signal ( )x t  with period 0T  may be represented as an infinite 

linear combination of complex exponentials: 

 0

2

( )
jk t

T
k

k

x t a e
π+∞

=−∞

= ∑ , (2.1) 

where 0 01/f T=  is the fundamental frequency, 0

2
jk t

Te
π

 is called the kth harmonic, and ak is 

the kth weight. This representation is called the Fourier series representation [1], where 

the set of coefficients ka  are called the Fourier series coefficients which are obtained by 

 0

0

2

0

1
( ) , ,...,

jk t
T

k
T

a x t e dt k
T

π
−

= = −∞ ∞∫ . (2.2) 

The coefficients ak’s are a measure of the strength of the signal’s components at the kth 

harmonic of the fundamental frequency. 
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b. Fourier Transform 

For aperiodic signals the Fourier series representation can be extended. 

Assuming that ( )px t  is a periodic signal with a period 0T , and ( )x t  represents one period 

of ( )px t , then as 0T  increases ( )px t  is identical to ( )x t  over a longer interval. Therefore, 

in the limiting case [2] 

 ( ) lim ( )
p

pT
x t x t

→∞
= . (2.3) 

Replacing the limits of the integral in equation (2.2) by −∞  and ∞ , and multiplying both 

sides by pT , leads to the Fourier Transform of x(t) given by 

 2( ) ( ) j ftX f x t e dtπ
∞

−

−∞

= ∫ , (2.4) 

where / pf k T=  and ( ) p kX f T a= . The Inverse Fourier Transform is used to recover the 

original signal ( )x t  from ( )X f , and is defined as 

 2( ) ( ) j ftx t X f e dfπ
∞

−∞

= ∫ . (2.5) 

The Discrete Time Fourier Transform (DTFT) is defined for discrete-time 

signals as 

 ( ) ( ) j n

n

X x n e ωω
∞

−

=∞

= ∑ , (2.6) 

and the corresponding inverse is given by 

 
2

1
( ) ( )

2
j nx n X e dω

π

ω ω
π

= ∫ . (2.7) 

It should be noted that the DTFT is periodic with period 2π . 

The Discrete Fourier Transform (DFT) for a finite time discrete-time 

signal x(n) with n=0,…, 1N −  is defined as 

 
1

2 /

0

( ) ( )
N

j kn N

n

X k x n e π
−

−

=

= ∑ . (2.8) 
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Its inverse is given by 

 
1

2 /

0

1
( ) ( ) .

N
j kn N

k

x n X k e
N

π
−

=

= ∑  (2.9) 

The Fast Fourier Transform is a computationally efficient implementation of the 

Discrete Fourier Transform when the signal length N is a power of two. The Discrete 

Fourier Transform requires N2 multiplications whereas the Fast Fourier Transform 

requires ( ) 2/ 2 logN N  multiplications. 

c. Short-Time Fourier Transform 

The basic Fourier Transform allows the passage from the time domain to 

the frequency domain. However, one may need to preserve both the time and the 

frequency information contained in non-stationary signals. Unfortunately, the basic 

Fourier Transform does not provide such dual information. 

Time localization can be introduced by windowing the signal before using 

the Fourier Transform, where the window size is selected short enough to assume the 

signal inside the window is stationary. Then, the Fourier transform may be implemented 

on each windowed signal portion. The resulting transformation is called the Short-Time 

Fourier Transform and expressed as 

 2( , ) ( ) ( ) j ft

t

S f x t w t e dtπτ τ −= −∫ , (2.10) 

where ( )w t τ−  denotes the sliding window centered around τ . Note that ( , )S fτ  

provides a two-dimensional representation of the signal frequency information at various 

times τ  and is a “local” spectrum of the signal ( )x t  around the analysis point τ  [3]. 

Many different window types may be selected, depending on the characteristics of the 

Short-Time Fourier Transform desired. In addition, the window length determines the 

resolution in time and in frequency; good time resolution requires a short window, 

whereas good frequency resolution requires a long window. The joint time-frequency 

resolution of the Short-Time Fourier Transform is limited by the uncertainty principle. A 

short time window results in a loss of frequency resolution, and vice versa. 
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2. Wavelet Analysis 

A wavelet is defined as a small wave which has its energy concentrated in time 

and frequency [4]. Such a characteristic is useful for the analysis of transient, non-

stationary or time-varying phenomena. By comparison, sinusoidal functions used in 

Fourier Analysis have a constant amplitude. 

The Wavelet Transform (WT) provides an alternative to the Short-Time Fourier 

Transform (STFT), as it uses short windows at high frequencies and long windows at low 

frequencies [5], while the STFT uses windows of constant size, as illustrated in Figure 1. 

Note that the Wavelet Transform still satisfies the uncertainty principle, however, the 

time resolution becomes arbitrarily good at high frequencies, while the frequency 

resolution becomes arbitrarily good at low frequencies. The following subsections 

discuss different types of Wavelet Transform that are used for continuous or discrete time 

signals. 

 

frequency frequency

time time

? f

? t

(a) STFT (b) WT

frequency frequency

time time

? f

? t

(a) STFT (b) WT

 
Figure 1.   (a) Time-Frequency resolution for the STFT, (b) Time-Frequency resolution for the WT. 
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a. The Continuous Time Wavelet Transform 

The Continuous Time Wavelet Transform may be applied to continuous 

signals and two dimensions in the transfer domain are continuous. It is similar to the 

Fourier Transform in that, it is obtained by projecting the signal onto a basis function. 

However, the Continuous Time Wavelet Transform projects the signal onto scaled and 

shifted versions of the wavelet function while the Fourier Transform uses complex 

exponentials as basis functions. The Continuous Time Wavelet Transform is defined as 

 
1

( , ) ( ) ( )
t

C s x t dt
ss
τ

τ ψ
∞

−∞

−
= ∫ , (2.11) 

where ( )tψ  is the wavelet function, τ  denotes the shift in time and s is the scale factor 

that denotes compression or expansion in time. The inverse transform for finite K is 

obtained by 

 2

1
( ) ( , ) ( )

t
x t K C s dsd

s s
τ

τ ψ τ
−

= ∫ ∫ , (2.12) 

where the parameter K is given by 

 
2( )

K d
ω

ω
ω

Ψ
= ∫ , (2.13) 

and ( )ωΨ  is the Fourier Transform of the wavelet function ( )tψ . [6] 

b. The Discrete Time Wavelet Transform 

The Discrete Time Wavelet Transform is the discrete time version of the 

Continuous Wavelet Transform. It is used for discrete time signals and the dimensions of 

the transform domain are discrete as well. The Discrete Wavelet Transform is obtained as 

 
1

( , ) ( ) ( )
n

n b
C a b x n

aa
ψ

−
= ∑ , (2.14) 

where a, b and n are the discrete parameter versions of s, τ  and t given in Equation 

(2.11), respectively. The scaling factor a has another restriction as 0
ja a=  where 
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j=0,1,…,log2(signal length). The common choice for 0a  is 2, as it allows for fast 

algorithms. 

c. Mallat’s Algorithm 

The Discrete Wavelet Transform, can be implemented by using Mallat’s 

algorithm when 0 2a =  [4], and is illustrated in Figure 2 for a three-level decomposition. 

The signal is passed through a high-pass and a low-pass filter, both of which have a 

bandwidth of half the signal spectrum. Then, following the Nyquist’s rule, the outputs of 

the filters are subsampled by two. The subsampled high-pass filter output is called the 

Detail Sequence and the subsampled low-pass filter output is called the Approximation 

Sequence. This procedure may be recursively applied to the approximation sequence 

obtained at previous levels. Note that a signal of length 2 j  can be decomposed only j 

times, because the approximation sequence has only one sample left after j levels. 

 

 
Figure 2.   Mallat’s algorithm. 

 

B. HIGHER ORDER STATISTICS 

1. Moments and Cumulants 

The first four moments for a real valued and stationary signal ( )x n are given by 

 { }1 ( ) ,m E x n=  (2.15) 

 { }2 1 1( ) ( ) ( ) ,m E x n x nτ τ= +  (2.16) 
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 { }3 1 2 1 2( , ) ( ) ( ) ( ) ,m E x n x n x nτ τ τ τ= + +  (2.17) 

 { }4 1 2 3 1 2 3( , , ) ( ) ( ) ( ) ( ) .m E x n x n x n x nτ τ τ τ τ τ= + + +  (2.18) 

The first two moments are equal to the mean and correlation functions respectively. The 

first four cumulants are given by 

 1 1 ,c m=  (2.19) 

 2
2 1 2 1 1 1( ) ( ) ( ) ,c m mτ τ τ= −  (2.20) 

 3
3 1 2 3 1 2 1 2 1 2 2 2 2 1 1( , ) ( , ) [ ( ) ( ) ( )] 2( ) ,c m m m m m mτ τ τ τ τ τ τ τ= − + + − +  (2.21) 

 

4 1 2 3 4 1 2 3 2 1 2 3 2 2 2 2 3 1

2 3 2 2 1 1 3 2 1 3 1

3 1 2 3 1 3 3 2 3

2
1 2 1 2 2 2 3 2 3 1

4
2 3 2 2 2 1 1

( , , ) ( , , ) ( ) ( ) ( ) ( )

( ) ( ) [ ( , )
( , ) ( , ) ( , )]

( ) [ ( ) ( ) ( ) ( )

( ) ( )] 6( ) .

c m m m m m

m m m m
m m m

m m m m m

m m m

τ τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ
τ τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ

= − − − −

− − − − −
+ + +

+ + + + −

+ − + − −

 (2.22) 

Note that the second and third order cumulants are identical to the second and third order 

moments respectively when ( )x n  is a zero-mean process. 

Cumulants have properties that make them more desirable than moments. Some 

of these properties are 

a. Each cumulant is independent of all lower order cumulants. 

b. All cumulants of order greater than two are equal to zero for Gaussian 

processes. Hence, any Gaussian process is completely characterized by its first two 

cumulants. Therefore higher-order cumulants can be used to estimate the degree of non-

Gaussianity of a process. 

c. Cumulants of the sum of two independent statistical processes are equal to 

the sum of their respective cumulants. [6] 

2. Variance, Skewness and Kurtosis Measures 

Setting 1 2 3, ,τ τ τ  equal to 0 in (2.20), (2.21), (2.22), and assuming that m1=0, leads 

to the variance 1γ , skewness 2γ , and kurtosis 3γ  measures: 
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 { }2
2 2( ) (0),E x n cγ = =  (2.23) 

 
{ }3

3 3

( )
,

E x n
γ

σ
=  (2.24) 

 
{ }4

4 4

( )
,

E x n
γ

σ
=  (2.25) 

where σ  is the standard deviation around the mean of the signal. [7] 

 

C. THE BOOTSTRAP 

The Bootstrap is a powerful technique for assessing the accuracy of a parameter 

estimator in situations where conventional techniques are not applicable [8]. In many 

applications, one needs to estimate one or more parameters of a random process, and/or 

calculate some statistical parameters such as the mean or variance. Most of the estimation 

techniques used for this purpose assume that the set of samples used in the estimation is 

large enough to reach asymptotic results. However, in practice this assumption usually 

does not hold as the sample set may not be large enough or the samples may be non-

stationary. The Bootstrap scheme randomly reassigns the observations, recomputes the 

estimates many times, and treats these reassignments as repeated experiments. In this 

section, first the basic Bootstrap principle is stated. Next, the usage of Bootstrap in 

estimating the confidence interval for a parameter is discussed, and finally this discussion 

is extended to hypothesis testing. 

1. Basic Principle 

Let x={x1, x2,…, xn} be a collection of n independent and identically distributed 

random variables drawn from an unknown distribution, D. Let p denote an unknown 

statistical parameter of D such as the mean or the variance, and µp  denote an estimator of 

p, calculated from x. If the estimate µp  is to be used in place of the real parameter p, it 

may be important to know the sampling distribution of µp . The distribution of µp  may be 

estimated with the Bootstrap method, and is obtained by resampling many times from a 

distribution µD , chosen to be close to D, such that µD  approaches D as n → ∞ . Note that 
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the choice of µD  is not unique. If the type of D is known but its statistical parameters are 

not known, then µD  is chosen as a distribution of the same type as D, with the statistical 

parameters obtained from x. For example, if we know that the data is Gaussian but do not 

know its mean and variance, we perform the resamplings assuming the data to have the 

same mean and variance as x has. This approach is called the parametric Bootstrap. If 

nothing is known about D, the resamplings are drawn from x with replacement, so that 

each value in a resample set has probability equal to 1/n. This approach is called the 

nonparametric Bootstrap.  

2. Parameter Confidence Interval 

The Bootstrap principle may also be applied to obtain a (1 )100%α−  confidence 

interval for the parameter p. First, the data set is resampled many times such that each 

resampled set is of the same size as the data. Next, an estimator µ
kp  is obtained from each 

resampled set, where 1,...,k N=  and N is the number of repetitions. Then, the estimates 

µ
kp  are sorted in increasing order. Finally the indices of the lower limit µ

Lp  and the upper 

limit µ
Up  of the estimates in 

 µ µ( ) 1L UP p p p α≤ ≤ = −   (2.26) 

are obtained by using 

 
2

N
L

α =   
 (2.27) 

and 

 1,U N L= − +  (2.28) 

where A    denotes the integer part of the value A.[8] 

3. Hypothesis Testing 

a. Description 

Suppose one needs to perform a hypothesis test, such as 0:H p p≤  

against the hypothesis 0:K p p> , where 0p  is given. A new statistic, defined as 
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 µ µ
µ

0p p
T

σ

−
=  (2.29) 

may be selected, where µσ  is the estimator of the standard deviation σ  of µp . The 

estimator for the standard deviation µσ  of µp  will be defined later.  

To perform the hypothesis testing, one first draws random sequences 
*
1x , *

2x ,..., *
Nx , of the same size as x, with replacement from x. Note that *  does not denote 

complex conjugation, but means that this is a resampled set, or a parameter obtained from 

a resampled set. Then the statistic µ*
T  is estimated from each sequence *x  as 

 µ µ µ
µ

*
*

*

p p
T

σ

−
= , (2.30) 

where µ *
p  and µ*

σ  are estimated parameters obtained from the resample *x , instead of x, 

and the constant 0p  is replaced with µp . Note that µσ  is included as a scale factor in the 

calculation of µT . Dividing by µσ  is called Bootstrap pivoting and it is done to ensure µT  

is asymptotically pivotal when n → ∞ , i.e., the asymptotic distribution of µT  does not 

depend on any unknown parameters. Replacing 0p  with µp  and using Bootstrap pivoting 

is important because the Bootstrap distribution of µ µ µ µ* * *
( ) /T p p σ= −  is a better 

approximation to the distribution of µ µ µ
0( ) /T p p σ= −  under H, than the Bootstrap 

distribution of µ µ**S p p= −  is to the distribution of µ
0S p p= −  under H [8, 9]. Next, the 

set of test statistics µ*
1T , µ *

2T ,…, µ*
NT  are sorted by increasing order, and the hypothesis H is 

rejected if µ µ*
( )MT T> , where M is chosen according to N and the level of significance α as 

[8, pp. 62] 

 ( 1)(1 )M N a= + − . (2.31) 
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Note that the test statistic µT  is given by 

 µ
µ

µ
0p p

T
σ

−
= , (2.32) 

when the hypotheses to be tested are 0:H p p=  against 0:K p p≠ . 

b. Estimation of the Standard Deviation for µp  

The parameter µσ  can be estimated by using the Bootstrap. Towards that 

end, resamples of the same length as the data set x, called *x  are drawn from x randomly 

with replacement, to obtain a total of B resamples. After resampling, the Bootstrap 

estimates µ *
p  are calculated in the same manner as µp  was, but with resamples *x  instead 

of x. As a result, the standard deviation µσ  of µp is estimated by 

 µ µ µ* *
2

1 1

1 1
( ) .

1

B B

b b
b b

p p
B B

σ
= =

= −
− ∑ ∑  (2.33) 

In this chapter we presented the processing techniques that we used in the 

proposed denoising scheme. In the next chapter we will discuss the proposed denoising 

scheme. 
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III. DENOISING USING THE KURTOSIS AND THE BOOTSTRAP 

A. INTRODUCTION 

Fourier and Wavelet transforms decompose a signal into several frequency bands. 

As a result, white Gaussian noise components affect all frequency bands. The proposed 

technique examines each frequency band and tends to minimize the white noise 

contribution. First, we obtain the signal time–frequency representation (or time-scale 

representation in the Wavelet transform case). Next, each frequency band is tested for 

Gaussianity, and thresholding is performed on the spectral location found to be Gaussian. 

Last, the signal is transformed to the time domain using the appropriate inverse 

transform. The following sections discuss two different implementations using Fourier 

and Wavelet transformations. 

B. FAST FOURIER TRANSFORM BASED DENOISING 

The FFT-based denoising scheme is performed in four steps, as illustrated in 

Figure 3. For computational convenience, the signal length is assumed to be 512 points. 

A longer data set could have been used, resulting in more frequency bands, and more 

computations. A data set of minimum length of 512 allows separation in time and 

frequency. A shorter segment will not provide a reasonable number of time-frequency 

cells. 
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Figure 3.   FFT-based denoising scheme. 
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1. Short-Time Fourier Transform Step 

In the first step, the data is divided into 32 data-point segments and weighted by a 

triangular window. A four-to-one overlap is used to obtain a reasonable data size. Then, 

each segment is transformed to the frequency domain with the Fast Fourier Transform. 

This results in 17 frequency bands. A larger data set would have allowed for a larger 

segment size. The STFT information is contained in a matrix of dimensions 61 by 32 

elements for a data length of 512 points, where the first number corresponds to the time 

dimension and the second one corresponds to the frequency dimension. 

2. Gaussianity Test Step 

The second step tests the Gaussianity of the transformed values in each frequency 

band, where real and imaginary parts of the data are tested separately with the kurtosis. 

Recall that the normalized kurtosis value for a Gaussian data sequence is equal to 3. 

Hence, looking at the kurtosis value may give an idea of a sequence’s Gaussianity, 

provided the data length is sufficient for the estimation to be meaningful. However, the 

sequences in this particular scheme are of length equal to 61, which may not be sufficient 

for meaningful estimations. Therefore, the Gaussianity test is implemented as a 

hypothesis test, with the hypothesis : 3H kurtosisof thedata = , and the hypothesis 

: 3K kurtosisof thedata ≠ . The sequence is found to be Gaussian when the hypothesis H 

is true, meaning the kurtosis value for the data sequence is 3 within the specified 

confidence interval. However, the sequence is found to be non-Gaussian when hypothesis 

K is true, meaning the kurtosis is not equal to 3 within the selected confidence interval. 

This hypothesis testing is performed using the Bootstrap method discussed earlier in 

Chapter 2. An empirical confidence interval 0.05α =  was selected here. 

3. Thresholding Step 

Signal components are found in a particular sequence when some frequency 

bands are estimated to be non-Gaussian for both real and imaginary parts. Thresholding is 

applied to each band estimated to be Gaussian, to minimize noise effects in these bands. 

Two thresholding schemes are considered below. 
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a. Hard Thresholding 

Hard thresholding zeroes out all values in the frequency band that is found 

to be Gaussian. The hard thresholding coefficient is 

 
0, if thebandisGaussian
1, if thebandisnotGaussian.hc


= 


 (3.1) 

b. Soft Thresholding 

Soft Thresholding is obtained by multiplying values in the specific 

frequency band that is found to be Gaussian, by a coefficient between 0 and 1. Using a 

coefficient of 0 is the same as hard thresholding, whereas using a coefficient of 1 is the 

same as leaving the frequency band undisturbed. The soft thresholding coefficient is 

calculated using 

 
µ

43

1.5sc
γ−

= , (3.2) 

where µ4γ  is the bootstrapped kurtosis of the particular frequency band, and  denotes 

the absolute value. The bootstrapped kurtosis value µ4γ  is limited not to exceed 4.5, which 

will be explained later. The bootstrapped kurtosis value µ4γ  is obtained by using the 

Bootstrap principle, which calls for resamplings from the data set many times with 

replacement, to obtain N resampled sets of the same length as the original data set. Next, 

the kurtosis value for each resample is found. Finally, the Bootstrapped kurtosis µ4γ  is 

defined as the estimated mean obtained from N kurtosis values. It should be noted that the 

thresholding coefficient c is a function of the frequency band’s degree of Gaussianity. 

Equation (3.1) shows that the coefficient c gets closer to 0 as the bootstrapped kurtosis 

value µ4γ  for a specific frequency band gets closer to the theoretical value 3, and vice 

versa. Therefore, the closer a frequency band gets to being Gaussian, the smaller 

contribution it has after soft thresholding. 

Recall that frequency bands to be thresholded are those that passed the 

Gaussianity test. Therefore, one would expect their corresponding bootstrapped kurtosis 
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estimates to be close to the theoretical value 3. However in some cases, the estimated 

bootstrapped kurtosis value may be far off from 3. For example, a few values in the band 

may be higher than the others especially when a frequency bin contains a short data 

segment. In this case, the band may pass the Gaussianity test as most of the band is 

Gaussian, but may still have a bootstrapped kurtosis value high enough to obtain a 

thresholding coefficient c greater than 1. Note that a thresholding coefficient greater than 

1 would amplify noise contributions in the frequency band, instead of suppressing them. 

Therefore, the bootstrapped kurtosis value µ4γ  is limited to 4.5 in (3.1) to avoid such 

potential noise amplification. This value is chosen empirically. Thus, if the bootstrapped 

kurtosis value of a specific frequency band is greater than 4.5, the data point with the 

largest absolute value in that band is stored away and replaced with a zero. Then, the 

bootstrapped kurtosis for that band is estimated again. This procedure is repeated until a 

kurtosis value less than or equal to 4.5 is obtained. However, the number of repetitions 

should be limited to ensure that most of the data is not zeroed out, to prevent 

bootstrapped kurtosis estimation problems. An empirical limit of one third of the number 

of time frames defined in the STFT. Note that if the estimated kurtosis value is still 

greater than 4.5 after that many iterations, then it is set to 4.5, which provides a 

thresholding coefficient equal to 1. This causes no change on the frequency band under 

consideration. 

After multiplying the frequency band with the thresholding coefficient, the 

values that were removed to limit the kurtosis estimation are reinserted into their original 

locations. This allows for the non-Gaussian values, which may correspond to the signal 

components, to not be affected by the thresholding step. 

4. Inverse Fourier Transform 

Real and imaginary parts of the frequency bands are combined to form the time-

frequency representation matrix after the thresholding step, and the recovered signal is 

obtained using the inverse Fourier transform. 
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C. WAVELET TRANSFORM BASED DENOISING 

The Wavelet transform-based denoising scheme is similar to the FFT-based 

scheme, as illustrated in Figure 4. Note that only real valued transforms are obtained in 

this case due to the real wavelet transform kernel form selected in our work (Daubechies 

wavelets of order 3, 4 or 5). The choice of Daubechies wavelets was motivated by the 

earlier works in GSM signal denoising reported by Aktas and Mantis [10, 11]. This 

denoising scheme is performed in four steps. 
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Figure 4.   WT-based denoising scheme. 

 

1.  The Wavelet Transform 

First, the Wavelet transform is applied to the noisy signal. Three-, four-, or five-

level decompositions are considered in this work, because simulations showed that 

higher-level decompositions do not improve performance, given the data length 

considered (512). 

2. Gaussianity Test 

The approximation and detail coefficients of a Gaussian data set remain Gaussian 

[12]. Thus, detail and approximation coefficients are tested for Gaussianity and a decision 

is made for each.  

 

 



20 

3. Thresholding 

The same thresholding procedure as that was considered earlier for the FFT-based 

denoising scheme is applied to the detail coefficients. However, thresholding the 

approximation coefficients may result in removing a significant portion of the signal. One 

can use one of the following four schemes to threshold the approximation coefficients to 

minimize potential distortion: Apply the thresholding scheme as that used on the detail 

coefficients, leave coefficients unperturbed, filter the approximation coefficients using a 

median filter of order three, or use a predictor of order two. The last two options were 

investigated as ways to smooth the approximation coefficients but they did not perform 

as good as the first two. Results for these operations are discussed in the next chapter. 

4. Inverse Wavelet Transform 

Finally, updated approximation and detail coefficients are inverse Wavelet 

transformed to obtain the recovered signal. 

In this chapter the proposed denoising scheme was discussed in detail. This 

scheme was tested using three test signals. The test signal descriptions and the simulation 

results are presented in the next chapter. 
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IV. SIGNAL DESCRIPTION AND SIMULATION RESULTS 

The denoising scheme presented in the previous chapter was tested using three 

test signals. The codes used for the simulations are presented in Appendix A. In this 

chapter the test signals are described and the simulation results are summarized. 

A. SIGNAL DESCRIPTION 

Three different types of test signals are used: a sinusoid, a chirp with constant 

amplitude, and a chirp with amplitude increasing in an RC time constant fashion, not to 

exceed a given maximum value. These signals are described below. 

1. Sinusoidal Signal 

The frequency of the sinusoidal signal is selected randomly for every trial, where 

the frequency range is limited to avoid aliasing and DC signals. Figure 5 shows an 

example where 0 10/512f = , and the sampling frequency 1sf = . 
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Figure 5.   Sinusoidal test signal; frequency 0 10/512f = , sampling frequency 1sf = . 

 

2. Constant Amplitude Chirp 

The constant amplitude chirp used in the simulations is obtained by 

 
3470

( ) sin
40

s t
t

 =  + 
. (4.1) 

The signal sampled with sampling frequency 1sf =  is shown in Figure 6.a. 
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3. Chirp With an RC Time Constant-Like Amplitude Increase 

This signal has a frequency starting with a high value and decreasing in time. 

However, the amplitude of the signal starts with a small value and increases with time. 

The increasing amplitude chirp is obtained by 

 
( 9)(512 ) 2 547.05

( ) sin
521 35.05

t t
s t

t
π+ −  =  + 

. (4.2) 

This test signal sampled with sampling frequency, 1sf = , was obtained from Wavelab 

[13] and is illustrated in Figure 6.b. 
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Figure 6.   (a) Second test signal, (b) Third test signal. 

 

B. SIMULATION RESULTS 

MATLAB [14] simulations were performed to test the performance of the 

proposed schemes. One hundred trials are considered for both schemes for signal-to-noise 

ratio (SNR) values ranging between –6 dB and 6 dB. To perform the hypothesis test in 
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the second step of both FFT-based and WT-based schemes, the Bootstrap MATLAB 

Toolbox [15] was used. The MATLAB code is included in Appendix A. 

The mean square error (MSE) and cross-correlation coefficients between original 

and recovered signals were selected as performance criteria. The MSE was initially 

selected as it is commonly used in signal processing applications to measure signal 

differences in the time domain. It is defined as: 

 µ 2

1 1

1 1
( ) ( )

M N

j j
j i

MSE s i s i
M N= =

 
= − 

 
∑ ∑ , (4.3) 

where M is the number of trials, N is the signal length, ( )js i  and µ( )js i  are the ith data 

sample of the original signal and the recovered signal at jth trial, respectively. Note that 

the MSE may not always be useful in evaluating actual performances. For example, in a 

denoising scheme when the recovered signal is close to the original version in most of the 

signal duration but it is very different for a short duration, the overall performance of the 

scheme can be satisfactory but at the same time the MSE may be large. In addition, 

simulations showed the MSE performances to be very similar on a large portion of the 

schemes investigated. Therefore, we considered an additional performance criterion, 

based on the cross-correlation coefficient to complement the information given by the 

MSE criterion. Recall that the normalized cross-correlation coefficient is commonly used 

to evaluate signal similarities and is defined as: 

 *

22 1

1 1

1
( ) ( )

( ) ( )

N

N N
i

i i

r s i s i

s i s i
=

= =

= ∑
∑ ∑

$
$

, (4.4) 

where *( )  denotes complex conjugation. Note that the cross-correlation coefficient r 

should be equal to 1 for a perfectly reconstructed noise-free signal. The closer the 

magnitude of r gets to 0, the worse the denoised signal will be. The distance measure 

between 1 and the normalized cross-correlation coefficient is given by 

 2

1

1
[1 ]

M

j
j

d r
M =

= −∑ , (4.5) 
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where M is the number of trials and jr  is the cross-correlation at lag zero for the jth trial. 

The resulting measure d is the additional criterion used to evaluate the denoising 

schemes’ performances in extracting the noise-free signal from the noisy signal. 

In our simulations sometimes the MSE performances of various schemes were 

close to each other and it was difficult to make a distinction among them. In this kind of 

cases the distance measure r was used in making a distinction. 

The proposed denoising schemes are compared with the original Wavelet 

shrinkage algorithm, which was introduced by Donoho and Johnstone [16, 17] to denoise 

signals embedded in additive white Gaussian noise with unit variance. Note that our 

schemes do not require knowledge of the noise variance levels to be applied, which is not 

the case for the original Donoho and Johnstone scheme. Also note that variable noise 

variances had been used in the simulations for the proposed scheme. Therefore the setup 

for the simulations needed to be changed before comparing the simulations for the 

proposed schemes with the Wavelet shrinkage algorithm. The Wavelet shrinkage 

algorithm is defined and comparison results are presented in Appendix C. 

1. Fast Fourier Transform-Based Denoising 

Performance criteria for the three test signals are illustrated for both thresholding 

options, in Figures 7 to 9. Examples of noisy signals and their recovered versions 

obtained by FT-based denoising scheme are included in Appendix B. 

a. Sinusoidal Signal 

Results, shown in Figure 7, indicate that hard and soft thresholding 

schemes have similar performances at all SNR values considered. 
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Figure 7.   Distance measure d and MSE performance criteria for the sinusoidal signal; FFT-based 

denoising. 

 

 

b. Constant Amplitude Chirp 

The MSE results shown in Figure 8 indicate no significant differences in 

thresholding scheme performances, while the distance measure results indicate better 

performance for the soft thresholding scheme at low and medium SNR levels. 
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Figure 8.   Distance measure d and MSE performance criteria for constant amplitude chirp signal; 

FFT-based denoising. 

 

c. Chirp With an RC Time Constant-Like Amplitude Increase 

Results shown in Figure 9 indicate that both thresholding schemes have 

similar MSE performances for SNR values below –3 dB, and that the soft thresholding 

scheme performs better for SNR values above –3 dB. The distance measure criterion 

indicates a better performance for soft thresholding for all SNR levels investigated. 
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Figure 9.   Distance measure d and MSE performance criteria for increasing amplitude chirp signal; 

FFT-based denoising. 

 

2. Wavelet Transform-Based Denoising 

Many parameters affect the performance of the wavelet transform-based 

denoising scheme. Recall that we consider four thresholding implementation schemes on 

the approximation coefficients: approximation coefficients left unperturbed (method 1), 

approximation coefficients thresholded identical to the detail coefficients (method 2), 

approximation coefficients median filtered with a filter of length three (method 3), and 

using an order-two predictor (method 4). Methods 3 and 4 do not perform as well as the 

first two methods because they oversmooth the approximation coefficients sequence, 

causing loss of signal power and degradation in the performance of the denoising scheme. 

Other parameters are the number of decomposition levels and the order of the Daubechies 

wavelet to be used (3, 4 and 5). The numbers in the figure legends next to the 

thresholding types are the Daubechies wavelet orders. MSE values obtained for all 
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schemes are close to each other and do not provide much information about relative 

performances. As a result, we consider the distance measure d to compare performances. 

In addition, we only show results obtained for the best of the 4 methods for the 

approximation coefficients and the best of the 3 wavelet based decompositions (3, 4 or 5 

level decompositions). Examples for noisy signals and their recovered versions obtained 

with WT-based denoising schemes are included in Appendix B. 

a. Sinusoidal Signal 

Results show that best performances are obtained with method 2 for this 

signal type. Figure 10 presents the WT-based scheme performance obtained for a 4-level 

decomposition with different wavelet orders and both thresholding schemes. Note that the 

sinusoidal signal has a constant frequency remaining in one of the frequency bands 

formed by the wavelet transform for the whole signal duration. Results show that the 

performance of the WT-based denoising scheme depends on the frequency of the specific 

test signal and the level of wavelet decomposition. Note that test signal frequencies were 

picked randomly for each trial. It should also be noted that when using method 1, the 

signal is left untouched only when it is located in the lowest frequency band (i.e., the 

band containing the approximation coefficients). However, noise when present is also left 

untouched in that lowest frequency band, while no such distinction is present in method 

2. 

Simulation results show that the soft thresholding scheme outperforms the 

hard thresholding implementation at SNR values below 2 dB, while all thresholding 

schemes perform similarly for higher SNRs. 
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Figure 10.   Distance measure and MSE for test signal 1, using a Wavelet-based 4-level 

decomposition and method 2, with Daubechies wavelet orders 3, 4 and 5. 

 

b. Constant Amplitude Chirp 

Results for the WT-based denoising scheme using 4-level decomposition 

and method 1 are presented in Figure 11. Method 1 was shown here because simulations 

indicated that method 1 has significantly higher performance than method 2 on the 

constant amplitude chirp signal. This result was to be expected as this signal has most of 

its power at low frequencies. Frequency components exist in several frequency bands, 

including the one containing the approximation coefficients. When method 2 is used, the 

sequence of approximation coefficients is tested for Gaussianity and may be estimated as 

Gaussian when the signal components are very short, resulting in thresholding of the 

signal components. However, such a problem does not exist in method 1 where the 

approximation coefficients are left untouched. Finally, simulation results show that a 

four-level decomposition performs better than a three or five-level decomposition.  



30 

-6 -4 -2 0 2 4 6
0

0.02

0.04

0.06

0.08

0.1

SNR

(a) Distance measure for constant amplitude chirp signal, 4 level decomposition, method 1

d

hard3
soft3
hard4
soft4
hard5
soft5

-6 -4 -2 0 2 4 6
10

-1

10
0

SNR

(b) MSE for constant amplitude chirp signal, 4 level decomposition, method 1

MSE

hard3
soft3
hard4
soft4
hard5
soft5

 
Figure 11.   Performance for constant amplitude chirp signal, using a Wavelet based 4-level 

decomposition and method 1, with Daubechies wavelet orders 3, 4 and 5. 

 

c. Chirp With an RC Time Constant-Like Amplitude Increase 

Simulations show method 1 has the best performance of the 4 methods 

investigated and associated results are presented in Figure 12. Results shown in Figure 12 

indicate that similar performances are obtained for all thresholding schemes and wavelet 

orders considered. 
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Figure 12.   Performance for increasing amplitude chirp signal, using a Wavelet-based 4-level 

decomposition and method 1, with Daubechies wavelet orders 3, 4 and 5. 

 
 

In this chapter the test signals were described and the simulation results 

were summarized. The conclusions are presented in the next chapter. 



32 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



33 

V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

This work considered a Bootstrap-based denoising scheme to denoise 

deterministic signals embedded in additive Gaussian noise. The Bootstrap is a technique 

derived for improving the accuracy of a parameter estimator, used especially in situations 

where conventional techniques are not valid since the data considered is short in length. 

This technique is used for parameter estimation and hypothesis testing in our work. 

The proposed Bootstrap-based denoising scheme has four steps. First, the noisy 

signal is transformed into a two-dimensional domain, using the Short-Time Fast Fourier 

or the Wavelet Transform. Next, Gaussianity tests are performed on the transformed data 

on a frequency band basis. No processing is applied to the data when the tested data is 

found to be non-Gaussian, as this indicates signal components in the data are dominant 

over Gaussian noise components. However, denoising is applied when the data tested is 

found to be Gaussian, which indicates that the noise components are dominant. Denoising 

is obtained by thresholding the frequency components in specific frequency bands to 

minimize noise effects. Finally, the recovered signal is obtained by applying the 

appropriate inverse transform. 

Denoising scheme performances were investigated using three test signals: a 

sinusoid, a constant amplitude chirp and a chirp with increasing amplitude. MSE and 

cross-correlation measures were selected to investigate the relative performances of all 

four denoising schemes considered in this work. In most cases, for a given SNR the MSE 

values obtained for schemes with different decomposition types and levels were similar at 

all SNRs and were not useful in discriminating between the various schemes investigated. 

However, the distance measure was more sensitive and showed more discriminating 

information. Results show that FFT-based schemes perform better than WT-based 

schemes on the stationary sinusoid signal type, whereas WT-based scheme outperforms 

the FFT-based scheme on the chirp signal types considered. In the FFT case, soft and 

hard thresholding schemes perform similarly on the sinusoid, while soft thresholding 

outperforms hard thresholding on the chirp signals. Results also show that soft 
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thresholding performs better on the stationary sinusoidal signal type but performs similar 

to hard thresholding on the chirps in the WT case. Note that thresholding methods are 

performed on the detail coefficients in the WT-based denoising case. However, using 

them directly on the approximation coefficients may cause signal loss. Therefore, four 

schemes were considered in the simulations: Leaving the approximation coefficients 

untouched, using the same thresholding schemes as the detail coefficients, using a median 

filter of order 3 on the approximation coefficients, and using a predictor of order 2 on the 

approximation coefficients. The second method performs best for the sinusoidal test 

signal whereas the first method performs the best for the chirp type test signals. 

Daubechies wavelets of orders 3, 4 and 5 were selected in the WT-based 

denoising scheme. Simulations show that wavelets of this family with higher orders did 

not improve performance for signals with the given length. 

The proposed denoising scheme was compared with the Wavelet shrinkage 

algorithm, which was introduced by Donoho and Johnstone [16, 17] to denoise signals 

embedded in additive white Gaussian noise with unit variance. Results indicate that the 

proposed WT-based denoising scheme performs better than the wavelet shrinkage 

algorithm for the sinusoidal test signal. However, the wavelet shrinkage algorithm 

outperforms the proposed scheme for the chirp type test signals. It should be noted that 

these results (Donoho and Johnstone) are restricted to the case of noise with unit 

variance. 

 

B. FUTURE WORK 

Our study was restricted to one wavelet family (Daubechies) only and further 

investigations should consider other types of wavelets to investigate the impact of the 

specific wavelet type on the resulting denoising performances. 
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APPENDIX A. MATLAB CODES 

MATLAB simulations were performed to  were used to test the performance of 

the denoising scheme. The codes used are presented in this chapter. The first and second 

sections present the codes for the FFT- and WT-based denoising schemes, respectively. 

The third section presents the sub-functions that were used in both of these codes. 

 

A. FFT-BASED DENOISING 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                          % 
% testkurtv7: implements the FFT-based denoising scheme on % 
%             three test signals                           % 
%                                                          % 
% SYNTAX    : testkurtv7                                   % 
%                                                          % 
% INPUT     : none                                         % 
%                                                          % 
% OUTPUT    : simulation results saved on disk             % 
%                                                          % 
% SUB FUNC  : MakeSignal.m                                 % 
%             kurtosistest.m                               % 
%                                                          % 
% Written by Hasan E. KAN                                  % 
%                                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear 
clc 
close all 
 
t=1:512; 
ampl=sqrt(10.^([.6 0 -.6])); 
 
kurlim=4.5; 
 
for sigtype=1:3 
 for trial=1:100 
        recksoft=zeros(length(ampl),512); 
        reckhard=zeros(length(ampl),512); 
        if sigtype==1 
  s=sin(2*pi*t*(1+ceil(rand*240))/512); 
s=s/sqrt(mean(s.^2)); 
  sigtypes='sin'; 
        elseif sigtype==2 
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  s=sin(34.7./[.01:.01:612]); 
s=s(41:552);s=s/sqrt(mean(s.^2)); 
  sigtypes='cch'; 
        elseif sigtype==3 
   s=makesignal('Doppler',521); 
s=s(10:521);s=s/sqrt(mean(s.^2)); 
   sigtypes='ech'; 
  end 
  signal=ones(length(ampl),1)*s; 
  sigpwr=sum(signal.^2,2)/512; 
   
  n=randn(length(ampl),512); 
  noise=((ampl./std(n'))'*ones(1,512)).*n; 
  noipwr=sum(noise.^2,2)/512; 
   
  SNR=10*log10(sigpwr./noipwr); 
   
  x=signal+noise; 
   
        for snr=1:length(ampl)%1:21 
            fx=zeros(61,32); 
            for segmentno=1:61 
                fx(segmentno,:)=fft(x(snr,(segmentno-
1)*8+1:(segmentno-1)*8+32).*triang(32)'); 
            end 
            fksoft=zeros(61,32); 
            fksoftr=zeros(61,17); 
            fksofti=zeros(61,17); 
            fkhard=zeros(61,32); 
            fkhardr=zeros(61,17); 
            fkhardi=zeros(61,17); 
            kurr=zeros(length(ampl),17); 
            kuri=zeros(length(ampl),17); 
            for segmentno=1:17 
                
[fksoftr(:,segmentno),fkhardr(:,segmentno),kurr(segmentno)]=kurto
sistest(real(fx(:,segmentno)),kurlim); 
                if imag(fx(:,segmentno))~=0 
                    
[fksofti(:,segmentno),fkhardi(:,segmentno),kuri(segmentno)]=kurto
sistest(imag(fx(:,segmentno)),kurlim); 
                end 
            end 
            fksoft(:,1:17)=fksoftr(:,1:17)+j*fksofti(:,1:17); 
            fkhard(:,1:17)=fkhardr(:,1:17)+j*fkhardi(:,1:17); 
            fksoft(:,18:32)=conj(fliplr(fksoft(:,2:16))); 
            fkhard(:,18:32)=conj(fliplr(fkhard(:,2:16))); 
            for segmentno=1:61 
                recksoft(snr,(segmentno-1)*8+1:(segmentno-
1)*8+32)=recksoft(snr,(segmentno-1)*8+1:(segmentno-
1)*8+32)+ifft(fksoft(segmentno,:)); 
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                reckhard(snr,(segmentno-1)*8+1:(segmentno-
1)*8+32)=reckhard(snr,(segmentno-1)*8+1:(segmentno-
1)*8+32)+ifft(fkhard(segmentno,:)); 
            end 
        end 
        recksoft=recksoft*0.5; 
        reckhard=reckhard*0.5; 
        msesoft(:,trial)=sum((signal-recksoft).^2,2)/512; 
        msehard(:,trial)=sum((signal-reckhard).^2,2)/512; 

   for snr=1:21 
            
corsoft(snr,trial)=xcorr(s,recksoft(snr,:),0,'coeff'); 
            
corhard(snr,trial)=xcorr(s,reckhard(snr,:),0,'coeff'); 
        end 
    end 
    save(sprintf('mse%s',sigtypes),'msemed','msesoft','msehard') 
    save(sprintf('cor%s',sigtypes),'corsoft','corhard') 
end 

 

B. WT-BASED DENOISING 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                          % 
% testkurtv7: implements the WT-based denoising scheme on  % 
%             three test signals                           % 
%                                                          % 
% SYNTAX    : testwav2                                     % 
%                                                          % 
% INPUT     : none                                         % 
%                                                          % 
% OUTPUT    : simulation results saved on disk             % 
%                                                          % 
% SUB FUNC  : MakeSignal.m                                 % 
%             kurtosistest.m                               % 
%                                                          % 
% Written by Hasan E. KAN                                  % 
%                                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear 
clc 
close all 
 
t=1:512; 
ampl=sqrt(10.^([.6 0 -.6])); 
 
kurlim=4.5; 
 
rec5db3soft=zeros(length(ampl),512,4); 
rec5db3hard=zeros(length(ampl),512,4); 
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rec4db3soft=zeros(length(ampl),512,4); 
rec4db3hard=zeros(length(ampl),512,4); 
rec3db3soft=zeros(length(ampl),512,4); 
rec3db3hard=zeros(length(ampl),512,4); 
 
rec5db4soft=zeros(length(ampl),512,4); 
rec5db4hard=zeros(length(ampl),512,4); 
rec4db4soft=zeros(length(ampl),512,4); 
rec4db4hard=zeros(length(ampl),512,4); 
rec3db4soft=zeros(length(ampl),512,4); 
rec3db4hard=zeros(length(ampl),512,4); 
 
rec5db5soft=zeros(length(ampl),512,4); 
rec5db5hard=zeros(length(ampl),512,4); 
rec4db5soft=zeros(length(ampl),512,4); 
rec4db5hard=zeros(length(ampl),512,4); 
rec3db5soft=zeros(length(ampl),512,4); 
rec3db5hard=zeros(length(ampl),512,4); 
 
for sigtype=1:3 
    for trial=1:100 
        if sigtype==1 
            
s=sin(2*pi*t*(1+ceil(rand*240))/512);s=s/sqrt(sum(s.^2)/512); 
            sigtypes='sin'; 
        elseif sigtype==2 
            
s=sin(34.7./[.01:.01:612]);s=s(41:552);s=s/sqrt(sum(s.^2)/512); 
            sigtypes='cch'; 
        elseif sigtype==3 
            
s=makesignal('Doppler',521);s=s(10:521);s=s/sqrt(sum(s.^2)/512); 
            sigtypes='ech'; 
        end 
  signal=ones(length(ampl),1)*s; 
  sigpwr=sum(signal.^2,2)/512; 
   
  n=randn(length(ampl),512); 
  noise=((ampl./std(n'))'*ones(1,512)).*n; 
  noipwr=sum(noise.^2,2)/512; 
   
  SNR=10*log10(sigpwr./noipwr); 
   
  x=signal+noise; 
   
        for snr=1:length(ampl) 
            [cdb3(snr,:),ldb3]=wavedec(x(snr,:),3,'db3'); 
            a3db3(snr,:)=appcoef(cdb3(snr,:),ldb3,'db3',3); 
            
[d1db3(snr,:),d2db3(snr,:),d3db3(snr,:)]=detcoef(cdb3(snr,:),ldb3
,[1,2,3]); 
            [a4db3(snr,:),d4db3(snr,:)]=dwt(a3db3(snr,:),'db3'); 
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            [a5db3(snr,:),d5db3(snr,:)]=dwt(a4db3(snr,:),'db3'); 
             
            [cdb4(snr,:),ldb4]=wavedec(x(snr,:),3,'db4'); 
            a3db4(snr,:)=appcoef(cdb4(snr,:),ldb4,'db4',3); 
            
[d1db4(snr,:),d2db4(snr,:),d3db4(snr,:)]=detcoef(cdb4(snr,:),ldb4
,[1,2,3]); 
            [a4db4(snr,:),d4db4(snr,:)]=dwt(a3db4(snr,:),'db4'); 
            [a5db4(snr,:),d5db4(snr,:)]=dwt(a4db4(snr,:),'db4'); 
             
            [cdb5(snr,:),ldb5]=wavedec(x(snr,:),3,'db5'); 
            a3db5(snr,:)=appcoef(cdb5(snr,:),ldb5,'db5',3); 
            
[d1db5(snr,:),d2db5(snr,:),d3db5(snr,:)]=detcoef(cdb5(snr,:),ldb5
,[1,2,3]); 
            [a4db5(snr,:),d4db5(snr,:)]=dwt(a3db5(snr,:),'db5'); 
            [a5db5(snr,:),d5db5(snr,:)]=dwt(a4db5(snr,:),'db5'); 
        end 
        
ra5db3soft=zeros(length(ampl),length(a5db3));ra5db3hard=zeros(len
gth(ampl),length(a5db3)); 
        
ra4db3soft=zeros(length(ampl),length(a4db3));ra4db3hard=zeros(len
gth(ampl),length(a4db3)); 
        
ra3db3soft=zeros(length(ampl),length(a3db3));ra3db3hard=zeros(len
gth(ampl),length(a3db3)); 
        
rd5db3soft=zeros(length(ampl),length(d5db3(1,:)));rd5db3hard=zero
s(length(ampl),length(d5db3(1,:))); 
        
rd4db3soft=zeros(length(ampl),length(d4db3));rd4db3hard=zeros(len
gth(ampl),length(d4db3)); 
        
rd3db3soft=zeros(length(ampl),length(d3db3));rd3db3hard=zeros(len
gth(ampl),length(d3db3)); 
        
rd2db3soft=zeros(length(ampl),length(d2db3));rd2db3hard=zeros(len
gth(ampl),length(d2db3)); 
        
rd1db3soft=zeros(length(ampl),length(d1db3));rd1db3hard=zeros(len
gth(ampl),length(d1db3)); 
         
        
ra5db4soft=zeros(length(ampl),length(a5db4));ra5db4hard=zeros(len
gth(ampl),length(a5db4)); 
        
ra4db4soft=zeros(length(ampl),length(a4db4));ra4db4hard=zeros(len
gth(ampl),length(a4db4)); 
        
ra3db4soft=zeros(length(ampl),length(a3db4));ra3db4hard=zeros(len
gth(ampl),length(a3db4)); 
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rd5db4soft=zeros(length(ampl),length(d5db4));rd5db4hard=zeros(len
gth(ampl),length(d5db4)); 
        
rd4db4soft=zeros(length(ampl),length(d4db4));rd4db4hard=zeros(len
gth(ampl),length(d4db4)); 
        
rd3db4soft=zeros(length(ampl),length(d3db4));rd3db4hard=zeros(len
gth(ampl),length(d3db4)); 
        
rd2db4soft=zeros(length(ampl),length(d2db4));rd2db4hard=zeros(len
gth(ampl),length(d2db4)); 
        
rd1db4soft=zeros(length(ampl),length(d1db4));rd1db4hard=zeros(len
gth(ampl),length(d1db4)); 
 
        
ra5db5soft=zeros(length(ampl),length(a5db5));ra5db5hard=zeros(len
gth(ampl),length(a5db5)); 
        
ra4db5soft=zeros(length(ampl),length(a4db5));ra4db5hard=zeros(len
gth(ampl),length(a4db5)); 
        
ra3db5soft=zeros(length(ampl),length(a3db5));ra3db5hard=zeros(len
gth(ampl),length(a3db5)); 
        
rd5db5soft=zeros(length(ampl),length(d5db5));rd5db5hard=zeros(len
gth(ampl),length(d5db5)); 
        
rd4db5soft=zeros(length(ampl),length(d4db5));rd4db5hard=zeros(len
gth(ampl),length(d4db5)); 
        
rd3db5soft=zeros(length(ampl),length(d3db5));rd3db5hard=zeros(len
gth(ampl),length(d3db5)); 
        
rd2db5soft=zeros(length(ampl),length(d2db5));rd2db5hard=zeros(len
gth(ampl),length(d2db5)); 
        
rd1db5soft=zeros(length(ampl),length(d1db5));rd1db5hard=zeros(len
gth(ampl),length(d1db5)); 
        for method=1:4 
   if method==1 
                ra5db3soft=a5db3;ra5db3hard=a5db3; 
                ra4db3soft=a4db3;ra4db3hard=a4db3; 
                ra3db3soft=a3db3;ra3db3hard=a3db3; 
                ra5db4soft=a5db4;ra5db4hard=a5db4; 
                ra4db4soft=a4db4;ra4db4hard=a4db4; 
                ra3db4soft=a3db4;ra3db4hard=a3db4; 
                ra5db5soft=a5db5;ra5db5hard=a5db5; 
                ra4db5soft=a4db5;ra4db5hard=a4db5; 
                ra3db5soft=a3db5;ra3db5hard=a3db5; 
                method1='no operation on approximation coeff.'; 



41 

   elseif method==2 
                for snr=1:length(ampl) 
                    
[ra5db3soft(snr,:),ra5db3hard(snr,:),kura5db3(snr)]=kurtosistest(
a5db3(snr,:),kurlim);     
                    
[ra4db3soft(snr,:),ra4db3hard(snr,:),kura4db3(snr)]=kurtosistest(
a4db3(snr,:),kurlim);     
                    
[ra3db3soft(snr,:),ra3db3hard(snr,:),kura3db3(snr)]=kurtosistest(
a3db3(snr,:),kurlim);     
                    
[ra5db4soft(snr,:),ra5db4hard(snr,:),kura5db4(snr)]=kurtosistest(
a5db4(snr,:),kurlim);     
                    
[ra4db4soft(snr,:),ra4db4hard(snr,:),kura4db4(snr)]=kurtosistest(
a4db4(snr,:),kurlim);     
                    
[ra3db4soft(snr,:),ra3db4hard(snr,:),kura3db4(snr)]=kurtosistest(
a3db4(snr,:),kurlim);     
                    
[ra5db5soft(snr,:),ra5db5hard(snr,:),kura5db5(snr)]=kurtosistest(
a5db5(snr,:),kurlim);     
                    
[ra4db5soft(snr,:),ra4db5hard(snr,:),kura4db5(snr)]=kurtosistest(
a4db5(snr,:),kurlim);     
                    
[ra3db5soft(snr,:),ra3db5hard(snr,:),kura3db5(snr)]=kurtosistest(
a3db5(snr,:),kurlim);     
                end 
                method1='using threshold on approximation 
coeff.'; 
   elseif method==3 
                
ra5db3soft=medfilt1(a5db3',3)';ra5db3hard=ra5db3soft; 
                
ra4db3soft=medfilt1(a4db3',3)';ra4db3hard=ra4db3soft; 
                
ra3db3soft=medfilt1(a3db3',3)';ra3db3hard=ra3db3soft; 
                
ra5db4soft=medfilt1(a5db4',3)';ra5db4hard=ra5db4soft; 
                
ra4db4soft=medfilt1(a4db4',3)';ra4db4hard=ra4db4soft; 
                
ra3db4soft=medfilt1(a3db4',3)';ra3db4hard=ra3db4soft; 
                
ra5db5soft=medfilt1(a5db5',3)';ra5db5hard=ra5db5soft; 
                
ra4db5soft=medfilt1(a4db5',3)';ra4db5hard=ra4db5soft; 
                
ra3db5soft=medfilt1(a3db5',3)';ra3db5hard=ra3db5soft; 
                method1='using medfilt3 on approximation coeff.'; 
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   else 
                
rra5db3=xcorr(a5db3',2,'unbiased');rra5db3=rra5db3(3:5,4*[0:2]+1)
; 
                
rra4db3=xcorr(a4db3',2,'unbiased');rra4db3=rra4db3(3:5,4*[0:2]+1)
; 
                
rra3db3=xcorr(a3db3',2,'unbiased');rra3db3=rra3db3(3:5,4*[0:2]+1)
; 
                
rra5db4=xcorr(a5db4',2,'unbiased');rra5db4=rra5db4(3:5,4*[0:2]+1)
; 
                
rra4db4=xcorr(a4db4',2,'unbiased');rra4db4=rra4db4(3:5,4*[0:2]+1)
; 
                
rra3db4=xcorr(a3db4',2,'unbiased');rra3db4=rra3db4(3:5,4*[0:2]+1)
; 
                
rra5db5=xcorr(a5db5',2,'unbiased');rra5db5=rra5db5(3:5,4*[0:2]+1)
; 
                
rra4db5=xcorr(a4db5',2,'unbiased');rra4db5=rra4db5(3:5,4*[0:2]+1)
; 
                
rra3db5=xcorr(a3db5',2,'unbiased');rra3db5=rra3db5(3:5,4*[0:2]+1)
; 
                for snr=1:length(ampl) 
                    
Rxa5db3=toeplitz(rra5db3(:,snr));Rxxa5db3=Rxa5db3(1:2,1:2); 
                    
Rxa4db3=toeplitz(rra4db3(:,snr));Rxxa4db3=Rxa4db3(1:2,1:2); 
                    
Rxa3db3=toeplitz(rra3db3(:,snr));Rxxa3db3=Rxa3db3(1:2,1:2); 
                    
Rxa5db4=toeplitz(rra5db4(:,snr));Rxxa5db4=Rxa5db4(1:2,1:2); 
                    
Rxa4db4=toeplitz(rra4db4(:,snr));Rxxa4db4=Rxa4db4(1:2,1:2); 
                    
Rxa3db4=toeplitz(rra3db4(:,snr));Rxxa3db4=Rxa3db4(1:2,1:2); 
                    
Rxa5db5=toeplitz(rra5db5(:,snr));Rxxa5db5=Rxa5db5(1:2,1:2); 
                    
Rxa4db5=toeplitz(rra4db5(:,snr));Rxxa4db5=Rxa4db5(1:2,1:2); 
                    
Rxa3db5=toeplitz(rra3db5(:,snr));Rxxa3db5=Rxa3db5(1:2,1:2); 
                    aa5db3=Rxxa5db3\Rxa5db3(2:3,1); 
                    aa4db3=Rxxa4db3\Rxa4db3(2:3,1); 
                    aa3db3=Rxxa3db3\Rxa3db3(2:3,1); 
                    aa5db4=Rxxa5db4\Rxa5db4(2:3,1); 
                    aa4db4=Rxxa4db4\Rxa4db4(2:3,1); 
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                    aa3db4=Rxxa3db4\Rxa3db4(2:3,1); 
                    aa5db5=Rxxa5db5\Rxa5db5(2:3,1); 
                    aa4db5=Rxxa4db5\Rxa4db5(2:3,1); 
                    aa3db5=Rxxa3db5\Rxa3db5(2:3,1); 
                    ra5db3soft(snr,:)=filter([0; 
aa5db3],1,a5db3(snr,:)); 
                    ra4db3soft(snr,:)=filter([0; 
aa4db3],1,a4db3(snr,:)); 
                    ra3db3soft(snr,:)=filter([0; 
aa3db3],1,a3db3(snr,:)); 
                    ra5db4soft(snr,:)=filter([0; 
aa5db4],1,a5db4(snr,:)); 
                    ra4db4soft(snr,:)=filter([0; 
aa4db4],1,a4db4(snr,:)); 
                    ra3db4soft(snr,:)=filter([0; 
aa3db4],1,a3db4(snr,:)); 
                    ra5db5soft(snr,:)=filter([0; 
aa5db5],1,a5db5(snr,:)); 
                    ra4db5soft(snr,:)=filter([0; 
aa4db5],1,a4db5(snr,:)); 
                    ra3db5soft(snr,:)=filter([0; 
aa3db5],1,a3db5(snr,:)); 
                end 
                ra5db3soft(:,1:2)=a5db3(:,1:2); 
                ra4db3soft(:,1:2)=a4db3(:,1:2); 
                ra3db3soft(:,1:2)=a3db3(:,1:2); 
                ra5db4soft(:,1:2)=a5db4(:,1:2); 
                ra4db4soft(:,1:2)=a4db4(:,1:2); 
                ra3db4soft(:,1:2)=a3db4(:,1:2); 
                ra5db5soft(:,1:2)=a5db5(:,1:2); 
                ra4db5soft(:,1:2)=a4db5(:,1:2); 
                ra3db5soft(:,1:2)=a3db5(:,1:2); 
                ra5db3hard=ra5db3soft; 
                ra4db3hard=ra4db3soft; 
                ra3db3hard=ra3db3soft; 
                ra5db4hard=ra5db4soft; 
                ra4db4hard=ra4db4soft; 
                ra3db4hard=ra3db4soft; 
                ra5db5hard=ra5db5soft; 
                ra4db5hard=ra4db5soft; 
                ra3db5hard=ra3db5soft; 
                method1='prediction on approximation coeff.'; 
   end 
   for snr=1:length(ampl) 
                
[rd5db3soft(snr,:),rd5db3hard(snr,:),kurd5db3(snr)]=kurtosistest(
d5db3(snr,:),kurlim); 
                
[rd4db3soft(snr,:),rd4db3hard(snr,:),kurd4db3(snr)]=kurtosistest(
d4db3(snr,:),kurlim); 
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[rd3db3soft(snr,:),rd3db3hard(snr,:),kurd3db3(snr)]=kurtosistest(
d3db3(snr,:),kurlim); 
                
[rd2db3soft(snr,:),rd2db3hard(snr,:),kurd2db3(snr)]=kurtosistest(
d2db3(snr,:),kurlim); 
                
[rd1db3soft(snr,:),rd1db3hard(snr,:),kurd1db3(snr)]=kurtosistest(
d1db3(snr,:),kurlim); 
                 
                
[rd5db4soft(snr,:),rd5db4hard(snr,:),kurd5db4(snr)]=kurtosistest(
d5db4(snr,:),kurlim); 
                
[rd4db4soft(snr,:),rd4db4hard(snr,:),kurd4db4(snr)]=kurtosistest(
d4db4(snr,:),kurlim); 
                
[rd3db4soft(snr,:),rd3db4hard(snr,:),kurd3db4(snr)]=kurtosistest(
d3db4(snr,:),kurlim); 
                
[rd2db4soft(snr,:),rd2db4hard(snr,:),kurd2db4(snr)]=kurtosistest(
d2db4(snr,:),kurlim); 
                
[rd1db4soft(snr,:),rd1db4hard(snr,:),kurd1db4(snr)]=kurtosistest(
d1db4(snr,:),kurlim); 
                 
                
[rd5db5soft(snr,:),rd5db5hard(snr,:),kurd5db5(snr)]=kurtosistest(
d5db5(snr,:),kurlim); 
                
[rd4db5soft(snr,:),rd4db5hard(snr,:),kurd4db5(snr)]=kurtosistest(
d4db5(snr,:),kurlim); 
                
[rd3db5soft(snr,:),rd3db5hard(snr,:),kurd3db5(snr)]=kurtosistest(
d3db5(snr,:),kurlim); 
                
[rd2db5soft(snr,:),rd2db5hard(snr,:),kurd2db5(snr)]=kurtosistest(
d2db5(snr,:),kurlim); 
                
[rd1db5soft(snr,:),rd1db5hard(snr,:),kurd1db5(snr)]=kurtosistest(
d1db5(snr,:),kurlim); 
            end 
   R5db3soft=[ra5db3soft rd5db3soft rd4db3soft 
rd3db3soft rd2db3soft rd1db3soft]; 
   R5db3hard=[ra5db3hard rd5db3hard rd4db3hard 
rd3db3hard rd2db3hard rd1db3hard]; 
   R4db3soft=[ra4db3soft rd4db3soft rd3db3soft 
rd2db3soft rd1db3soft]; 
   R4db3hard=[ra4db3hard rd4db3hard rd3db3hard 
rd2db3hard rd1db3hard]; 
   R3db3soft=[ra3db3soft rd3db3soft rd2db3soft 
rd1db3soft]; 
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   R3db3hard=[ra3db3hard rd3db3hard rd2db3hard 
rd1db3hard]; 
  
   R5db4soft=[ra5db4soft rd5db4soft rd4db4soft 
rd3db4soft rd2db4soft rd1db4soft]; 
   R5db4hard=[ra5db4hard rd5db4hard rd4db4hard 
rd3db4hard rd2db4hard rd1db4hard]; 
   R4db4soft=[ra4db4soft rd4db4soft rd3db4soft 
rd2db4soft rd1db4soft]; 
   R4db4hard=[ra4db4hard rd4db4hard rd3db4hard 
rd2db4hard rd1db4hard]; 
   R3db4soft=[ra3db4soft rd3db4soft rd2db4soft 
rd1db4soft]; 
   R3db4hard=[ra3db4hard rd3db4hard rd2db4hard 
rd1db4hard]; 
  
   R5db5soft=[ra5db5soft rd5db5soft rd4db5soft 
rd3db5soft rd2db5soft rd1db5soft]; 
   R5db5hard=[ra5db5hard rd5db5hard rd4db5hard 
rd3db5hard rd2db5hard rd1db5hard]; 
   R4db5soft=[ra4db5soft rd4db5soft rd3db5soft 
rd2db5soft rd1db5soft]; 
   R4db5hard=[ra4db5hard rd4db5hard rd3db5hard 
rd2db5hard rd1db5hard]; 
   R3db5soft=[ra3db5soft rd3db5soft rd2db5soft 
rd1db5soft]; 
   R3db5hard=[ra3db5hard rd3db5hard rd2db5hard 
rd1db5hard]; 
            for snr=1:length(ampl) 
                
rec5db3soft(snr,:,method)=waverec(R5db3soft(snr,:),[20 20 36 68 
131 258 512],'db3'); 
   
 rec5db3hard(snr,:,method)=waverec(R5db3hard(snr,:),[20 20 
36 68 131 258 512],'db3'); 
                
rec4db3soft(snr,:,method)=waverec(R4db3soft(snr,:),[36 36 68 131 
258 512],'db3'); 
   
 rec4db3hard(snr,:,method)=waverec(R4db3hard(snr,:),[36 36 
68 131 258 512],'db3'); 
                
rec3db3soft(snr,:,method)=waverec(R3db3soft(snr,:),[68 68 131 258 
512],'db3'); 
   
 rec3db3hard(snr,:,method)=waverec(R3db3hard(snr,:),[68 68 
131 258 512],'db3'); 
                 
                
rec5db4soft(snr,:,method)=waverec(R5db4soft(snr,:),[22 22 38 70 
133 259 512],'db4'); 
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 rec5db4hard(snr,:,method)=waverec(R5db4hard(snr,:),[22 22 
38 70 133 259 512],'db4'); 
                
rec4db4soft(snr,:,method)=waverec(R4db4soft(snr,:),[38 38 70 133 
259 512],'db4'); 
   
 rec4db4hard(snr,:,method)=waverec(R4db4hard(snr,:),[38 38 
70 133 259 512],'db4'); 
                
rec3db4soft(snr,:,method)=waverec(R3db4soft(snr,:),[70 70 133 259 
512],'db4'); 
   
 rec3db4hard(snr,:,method)=waverec(R3db4hard(snr,:),[70 70 
133 259 512],'db4'); 
                 
                
rec5db5soft(snr,:,method)=waverec(R5db5soft(snr,:),[24 24 40 71 
134 260 512],'db5'); 
   
 rec5db5hard(snr,:,method)=waverec(R5db5hard(snr,:),[24 24 
40 71 134 260 512],'db5'); 
                
rec4db5soft(snr,:,method)=waverec(R4db5soft(snr,:),[40 40 71 134 
260 512],'db5'); 
   
 rec4db5hard(snr,:,method)=waverec(R4db5hard(snr,:),[40 40 
71 134 260 512],'db5'); 
                
rec3db5soft(snr,:,method)=waverec(R3db5soft(snr,:),[71 71 134 260 
512],'db5'); 
   
 rec3db5hard(snr,:,method)=waverec(R3db5hard(snr,:),[71 71 
134 260 512],'db5'); 
            end 
        end 
        signa=repmat(signal,[1,1,4]); 
         
  mse5db3soft(:,trial,:)=sum((signa-
rec5db3soft).^2,2)/512; 
  mse5db3hard(:,trial,:)=sum((signa-
rec5db3hard).^2,2)/512; 
  mse4db3soft(:,trial,:)=sum((signa-
rec4db3soft).^2,2)/512; 
  mse4db3hard(:,trial,:)=sum((signa-
rec4db3hard).^2,2)/512; 
  mse3db3soft(:,trial,:)=sum((signa-
rec3db3soft).^2,2)/512; 
  mse3db3hard(:,trial,:)=sum((signa-
rec3db3hard).^2,2)/512; 
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  mse5db4soft(:,trial,:)=sum((signa-
rec5db4soft).^2,2)/512; 
  mse5db4hard(:,trial,:)=sum((signa-
rec5db4hard).^2,2)/512; 
  mse4db4soft(:,trial,:)=sum((signa-
rec4db4soft).^2,2)/512; 
  mse4db4hard(:,trial,:)=sum((signa-
rec4db4hard).^2,2)/512; 
  mse3db4soft(:,trial,:)=sum((signa-
rec3db4soft).^2,2)/512; 
  mse3db4hard(:,trial,:)=sum((signa-
rec3db4hard).^2,2)/512; 
 
  mse5db5soft(:,trial,:)=sum((signa-
rec5db5soft).^2,2)/512; 
  mse5db5hard(:,trial,:)=sum((signa-
rec5db5hard).^2,2)/512; 
  mse4db5soft(:,trial,:)=sum((signa-
rec4db5soft).^2,2)/512; 
  mse4db5hard(:,trial,:)=sum((signa-
rec4db5hard).^2,2)/512; 
  mse3db5soft(:,trial,:)=sum((signa-
rec3db5soft).^2,2)/512; 
  mse3db5hard(:,trial,:)=sum((signa-
rec3db5hard).^2,2)/512; 
        for snr=1:21 
            for method=1:4 
                
cor3db3soft(snr,trial,method)=xcorr(s,rec3db3soft(snr,:,method),0
,'coeff'); 
                
cor3db4soft(snr,trial,method)=xcorr(s,rec3db4soft(snr,:,method),0
,'coeff'); 
                
cor3db5soft(snr,trial,method)=xcorr(s,rec3db5soft(snr,:,method),0
,'coeff'); 
                
cor4db3soft(snr,trial,method)=xcorr(s,rec4db3soft(snr,:,method),0
,'coeff'); 
                
cor4db4soft(snr,trial,method)=xcorr(s,rec4db4soft(snr,:,method),0
,'coeff'); 
                
cor4db5soft(snr,trial,method)=xcorr(s,rec4db5soft(snr,:,method),0
,'coeff'); 
                
cor5db3soft(snr,trial,method)=xcorr(s,rec5db3soft(snr,:,method),0
,'coeff'); 
                
cor5db4soft(snr,trial,method)=xcorr(s,rec5db4soft(snr,:,method),0
,'coeff'); 
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cor5db5soft(snr,trial,method)=xcorr(s,rec5db5soft(snr,:,method),0
,'coeff'); 
                
cor3db3hard(snr,trial,method)=xcorr(s,rec3db3hard(snr,:,method),0
,'coeff'); 
                
cor3db4hard(snr,trial,method)=xcorr(s,rec3db4hard(snr,:,method),0
,'coeff'); 
                
cor3db5hard(snr,trial,method)=xcorr(s,rec3db5hard(snr,:,method),0
,'coeff'); 
                
cor4db3hard(snr,trial,method)=xcorr(s,rec4db3hard(snr,:,method),0
,'coeff'); 
                
cor4db4hard(snr,trial,method)=xcorr(s,rec4db4hard(snr,:,method),0
,'coeff'); 
                
cor4db5hard(snr,trial,method)=xcorr(s,rec4db5hard(snr,:,method),0
,'coeff'); 
                
cor5db3hard(snr,trial,method)=xcorr(s,rec5db3hard(snr,:,method),0
,'coeff'); 
                
cor5db4hard(snr,trial,method)=xcorr(s,rec5db4hard(snr,:,method),0
,'coeff'); 
                
cor5db5hard(snr,trial,method)=xcorr(s,rec5db5hard(snr,:,method),0
,'coeff'); 
            end 
        end 
    end 
    
save(sprintf('mse%s3lvl',sigtypes),'msemed','mse3db3soft','mse3db
3hard','mse3db4soft','mse3db4hard','mse3db5soft','mse3db5hard') 
    
save(sprintf('mse%s4lvl',sigtypes),'msemed','mse4db3soft','mse4db
3hard','mse4db4soft','mse4db4hard','mse4db5soft','mse4db5hard') 
    
save(sprintf('mse%s5lvl',sigtypes),'msemed','mse5db3soft','mse5db
3hard','mse5db4soft','mse5db4hard','mse5db5soft','mse5db5hard') 
    
save(sprintf('cor%s3lvl',sigtypes),'cor3db3soft','cor3db3hard','c
or3db4soft','cor3db4hard','cor3db5soft','cor3db5hard') 
    
save(sprintf('cor%s4lvl',sigtypes),'cor4db3soft','cor4db3hard','c
or4db4soft','cor4db4hard','cor4db5soft','cor4db5hard') 
    
save(sprintf('cor%s5lvl',sigtypes),'cor5db3soft','cor5db3hard','c
or5db4soft','cor5db4hard','cor5db5soft','cor5db5hard') 
end 
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C. SUB FUNCTIONS 

1. MakeSignal 

This code is part of Wavelab version 802 [11]. 

 
function sig = MakeSignal(Name,n) 
% MakeSignal -- Make artificial signal 
%  Usage 
%    sig = MakeSignal(Name,n) 
%  Inputs 
%    Name   string: 'HeaviSine', 'Bumps', 'Blocks', 
%            'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine', 
%            'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp', 
%            'MishMash', 'WernerSorrows' (Heisenberg), 
%            'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise 
Smooth), 
%      'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor' 
%      'sineoneoverx','Cusp2','SmoothCusp','Gaussian' 
%      'Piece-Polynomial' (Piece-Wise 3rd degree polynomial) 
%    n      desired signal length 
%  Outputs 
%    sig    1-d signal 
% 
%  References 
%    Various articles of D.L. Donoho and I.M. Johnstone 
% 
   if nargin > 1, 
 t = (1:n) ./n; 
   end 
 if strcmp(Name,'HeaviSine'), 
     sig = 4.*sin(4*pi.*t); 
     sig = sig - sign(t - .3) - sign(.72 - t); 
 elseif strcmp(Name,'Bumps'), 
     pos = [ .1 .13 .15 .23 .25 .40 .44 .65  .76 .78 .81]; 
     hgt = [ 4  5   3   4  5  4.2 2.1 4.3  3.1 5.1 4.2]; 
     wth = [.005 .005 .006 .01 .01 .03 .01 .01  .005 .008 
.005]; 
     sig = zeros(size(t)); 
     for j =1:length(pos) 
        sig = sig + hgt(j)./( 1 + abs((t - 
pos(j))./wth(j))).^4; 
     end  
 elseif strcmp(Name,'Blocks'), 
     pos = [ .1 .13 .15 .23 .25 .40 .44 .65  .76 .78 .81]; 
     hgt = [4 (-5) 3 (-4) 5 (-4.2) 2.1 4.3  (-3.1) 2.1 (-
4.2)]; 
     sig = zeros(size(t)); 
     for j=1:length(pos) 
         sig = sig + (1 + sign(t-pos(j))).*(hgt(j)/2) ; 
     end 
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 elseif strcmp(Name,'Doppler'), 
     sig = sqrt(t.*(1-t)).*sin((2*pi*1.05) ./(t+.05)); 
 elseif strcmp(Name,'Ramp'), 
     sig = t - (t >= .37); 
 elseif strcmp(Name,'Cusp'), 
     sig = sqrt(abs(t - .37)); 
 elseif strcmp(Name,'Sing'), 
     k = floor(n * .37); 
     sig = 1 ./abs(t - (k+.5)/n); 
 elseif strcmp(Name,'HiSine'), 
     sig = sin( pi * (n * .6902) .* t); 
 elseif strcmp(Name,'LoSine'), 
     sig = sin( pi * (n * .3333) .* t); 
 elseif strcmp(Name,'LinChirp'), 
     sig = sin(pi .* t .* ((n .* .500) .* t)); 
 elseif strcmp(Name,'TwoChirp'), 
     sig = sin(pi .* t .* (n .* t)) + sin((pi/3) .* t .* (n 
.* t)); 
 elseif strcmp(Name,'QuadChirp'), 
     sig = sin( (pi/3) .* t .* (n .* t.^2)); 
 elseif strcmp(Name,'MishMash'),  % QuadChirp + LinChirp + 
HiSine 
     sig = sin( (pi/3) .* t .* (n .* t.^2)) ; 
     sig = sig +  sin( pi * (n * .6902) .* t); 
     sig = sig +  sin(pi .* t .* (n .* .125 .* t)); 
 elseif strcmp(Name,'WernerSorrows'), 
     sig = sin( pi .* t .* (n/2 .* t.^2)) ; 
     sig = sig +  sin( pi * (n * .6902) .* t); 
     sig = sig +  sin(pi .* t .* (n .* t)); 
     pos = [ .1 .13 .15 .23 .25 .40 .44 .65  .76 .78 .81]; 
     hgt = [ 4  5   3   4  5  4.2 2.1 4.3  3.1 5.1 4.2]; 
     wth = [.005 .005 .006 .01 .01 .03 .01 .01  .005 .008 
.005]; 
     for j =1:length(pos) 
        sig = sig + hgt(j)./( 1 + abs((t - 
pos(j))./wth(j))).^4; 
     end  
 elseif strcmp(Name,'Leopold'), 
     sig = (t == floor(.37 * n)/n);  % Kronecker 
 elseif strcmp(Name,'Riemann'), 
  sqn = round(sqrt(n)); 
     sig = t .* 0;  % Riemann's Non-differentiable Function 
  sig((1:sqn).^2) = 1. ./ (1:sqn); 
  sig = real(ifft(sig)); 
 elseif strcmp(Name,'HypChirps'), % Hyperbolic Chirps of 
Mallat's book 
  alpha = 15*n*pi/1024; 
  beta    = 5*n*pi/1024; 
  t   = (1.001:1:n+.001)./n;  
  f1      = zeros(1,n); 
  f2      = zeros(1,n);  
  f1   = sin(alpha./(.8-t)).*(0.1<t).*(t<0.68); 
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  f2   = sin(beta./(.8-t)).*(0.1<t).*(t<0.75); 
  M   = round(0.65*n); 
  P  = floor(M/4); 
  enveloppe = ones(1,M); % the rising cutoff function  
            enveloppe(1:P) = (1+sin(-pi/2+((1:P)-ones(1,P))./(P-
1)*pi))/2; 
            enveloppe(M-P+1:M) = reverse(enveloppe(1:P)); 
    env  = zeros(1,n); 
    env(ceil(n/10):M+ceil(n/10)-1) = enveloppe(1:M); 
  sig     = (f1+f2).*env; 
 elseif strcmp(Name,'LinChirps'), % Linear Chirps of 
Mallat's book 
  b  = 100*n*pi/1024; 
  a  = 250*n*pi/1024; 
  t  = (1:n)./n;  
  A1  = sqrt((t-1/n).*(1-t)); 
  sig = A1.*(cos((a*(t).^2)) + cos((b*t+a*(t).^2))); 
 elseif strcmp(Name,'Chirps'), % Mixture of Chirps of 
Mallat's book 
  t  = (1:n)./n.*10.*pi;   
    f1  = cos(t.^2*n/1024); 
  a  = 30*n/1024; 
    t  = (1:n)./n.*pi;   
    f2  = cos(a.*(t.^3)); 
    f2  = reverse(f2); 
  ix  = (-n:n)./n.*20; 
   g  = exp(-ix.^2*4*n/1024); 
  i1  = (n/2+1:n/2+n); 
  i2  = (n/8+1:n/8+n); 
  j   = (1:n)/n; 
      f3  = g(i1).*cos(50.*pi.*j*n/1024); 
  f4  = g(i2).*cos(350.*pi.*j*n/1024); 
  sig  = f1+f2+f3+f4; 
     enveloppe = ones(1,n); % the rising cutoff function  
    enveloppe(1:n/8) = (1+sin(-pi/2+((1:n/8)-
ones(1,n/8))./(n/8-1)*pi))/2; 
    enveloppe(7*n/8+1:n) = reverse(enveloppe(1:n/8)); 
   sig  = sig.*enveloppe; 
        elseif strcmp(Name,'Gabor'), % two modulated Gabor 
functions in  
         % Mallat's book 
  N = 512;  
     t = (-N:N)*5/N; 
         j = (1:N)./N; 
  g = exp(-t.^2*20); 
  i1 = (2*N/4+1:2*N/4+N); 
  i2 = (N/4+1:N/4+N); 
  sig1 = 3*g(i1).*exp(i*N/16.*pi.*j); 
  sig2 = 3*g(i2).*exp(i*N/4.*pi.*j); 
     sig = sig1+sig2; 
 elseif strcmp(Name,'sineoneoverx'), % sin(1/x) in Mallat's 
book 
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  N = 1024; 
  i = (-N+1:N); 
  i(N) = 1/100; 
  i = i./(N-1); 
  sig = sin(1.5./(i)); 
  sig = sig(513:1536); 
 elseif strcmp(Name,'Cusp2'), 
  N = 64; 
  i = (1:N)./N; 
  x = (1-sqrt(i)) + i/2 -.5; 
  M = 8*N; 
  sig = zeros(1,M); 
  sig(M-1.5.*N+1:M-.5*N) = x; 
  sig(M-2.5*N+2:M-1.5.*N+1) = reverse(x); 
  sig(3*N+1:3*N + N) = .5*ones(1,N); 
 elseif strcmp(Name,'SmoothCusp'), 
  sig = MakeSignal('Cusp2'); 
  N = 64; 
  M = 8*N; 
  t = (1:M)/M; 
  sigma = 0.01; 
  g = exp(-.5.*(abs(t-
.5)./sigma).^2)./sigma./sqrt(2*pi); 
  g = fftshift(g); 
  sig2 = iconv(g',sig)'/M;  
    elseif strcmp(Name,'Piece-Regular'), 
  sig1=-15*MakeSignal('Bumps',n); 
  t = (1:fix(n/12)) ./fix(n/12); 
  sig2=-exp(4*t); 
  t = (1:fix(n/7)) ./fix(n/7); 
  sig5=exp(4*t)-exp(4); 
  t = (1:fix(n/3)) ./fix(n/3); 
  sigma=6/40; 
  sig6=-70*exp(-((t-1/2).*(t-1/2))/(2*sigma^2)); 
  sig(1:fix(n/7))= sig6(1:fix(n/7)); 
 
 sig((fix(n/7)+1):fix(n/5))=0.5*sig6((fix(n/7)+1):fix(n/5)); 
 
 sig((fix(n/5)+1):fix(n/3))=sig6((fix(n/5)+1):fix(n/3)); 
 
 sig((fix(n/3)+1):fix(n/2))=sig1((fix(n/3)+1):fix(n/2)); 
  sig((fix(n/2)+1):(fix(n/2)+fix(n/12)))=sig2; 
  sig((fix(n/2)+2*fix(n/12)):-
1:(fix(n/2)+fix(n/12)+1))=sig2; 
sig(fix(n/2)+2*fix(n/12)+fix(n/20)+1:(fix(n/2)+2*fix(n/12)+3*fix(
n/20)))=... 
-ones(1,fix(n/2)+2*fix(n/12)+3*fix(n/20)-fix(n/2)-2*fix(n/12)-
fix(n/20))*25; 
  k=fix(n/2)+2*fix(n/12)+3*fix(n/20); 
  sig((k+1):(k+fix(n/7)))=sig5; 
  diff=n-5*fix(n/5); 
  sig(5*fix(n/5)+1:n)=sig(diff:-1:1); 
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  % zero-mean 
  bias=sum(sig)/n; 
  sig=bias-sig; 
    elseif strcmp(Name,'Piece-Polynomial'), 
  t = (1:fix(n/5)) ./fix(n/5); 
  sig1=20*(t.^3+t.^2+4); 
  sig3=40*(2.*t.^3+t) + 100; 
  sig2=10.*t.^3 + 45; 
  sig4=16*t.^2+8.*t+16; 
  sig5=20*(t+4); 
  sig6(1:fix(n/10))=ones(1,fix(n/10)); 
  sig6=sig6*20; 
  sig(1:fix(n/5))=sig1; 
  sig(2*fix(n/5):-1:(fix(n/5)+1))=sig2; 
  sig((2*fix(n/5)+1):3*fix(n/5))=sig3; 
  sig((3*fix(n/5)+1):4*fix(n/5))=sig4; 
  sig((4*fix(n/5)+1):5*fix(n/5))=sig5(fix(n/5):-1:1); 
  diff=n-5*fix(n/5); 
  sig(5*fix(n/5)+1:n)=sig(diff:-1:1); 
  %sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=-
ones(1,fix(n/10))*20; 
 
 sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=ones(1,fix(n/10))*
10; 
  sig((n-fix(n/10)+1):(n+fix(n/20)-
fix(n/10)))=ones(1,fix(n/20))*150; 
  % zero-mean 
  bias=sum(sig)/n; 
  sig=sig-bias; 
    elseif strcmp(Name,'Gaussian'), 
  sig=GWN(n,beta); 
  g=zeros(1,n); 
  lim=alpha*n; 
  mult=pi/(2*alpha*n); 
  g(1:lim)=(cos(mult*(1:lim))).^2; 
  g((n/2+1):n)=g((n/2):-1:1); 
  g = rnshift(g,n/2); 
  g=g/norm(g); 
  sig=iconv(g,sig); 
       else 
     disp(sprintf('MakeSignal: I don*t recognize 
<<%s>>',Name)) 
     disp('Allowable Names are:') 
        disp('HeaviSine'), 
        disp('Bumps'), 
        disp('Blocks'), 
        disp('Doppler'), 
        disp('Ramp'), 
        disp('Cusp'), 
        disp('Crease'), 
        disp('Sing'), 
        disp('HiSine'), 
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        disp('LoSine'), 
        disp('LinChirp'), 
        disp('TwoChirp'), 
        disp('QuadChirp'), 
        disp('MishMash'), 
        disp('WernerSorrows'), 
        disp('Leopold'), 
        disp('Sing'), 
        disp('HiSine'), 
        disp('LoSine'), 
        disp('LinChirp'), 
        disp('TwoChirp'), 
        disp('QuadChirp'), 
        disp('MishMash'), 
        disp('WernerSorrows'), 
        disp('Leopold'), 
        disp('Riemann'), 
        disp('HypChirps'), 
        disp('LinChirps'), 
        disp('Chirps'), 
        disp('sineoneoverx'), 
        disp('Cusp2'), 
        disp('SmoothCusp'), 
        disp('Gabor'), 
        disp('Piece-Regular'); 
        disp('Piece-Polynomial'); 
        disp('Gaussian'); 
 end 
  
% 
% Originally made by David L. Donoho. 
% Function has been enhanced. 
     
     
%    
% Part of WaveLab Version 802 
% Built Sunday, October 3, 1999 8:52:27 AM 
% This is Copyrighted Material 
% For Copying permissions see COPYING.m 
% Comments? e-mail wavelab@stat.stanford.edu 
%    
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2. Kurtosistest 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                                          % 
% kurtosistest: implements thebootstrap-based hypothesis   % 
%               test H: kurtosis of the input=3 against    % 
%               kurtosis of input~=3 and performs soft and % 
%               hard thresholding on the data              % 
%                                                          % 
% SYNTAX    : [soft,hard,kur] = kurtosistest[data,kurlim]  % 
%                                                          % 
% INPUT     : data: data sequence to be tested             % 
%             kurlim: kurtosis limit not to be exceeded    % 
%                     thresholding                         % 
%                                                          % 
% OUTPUT    : soft: soft thresholded data                  % 
%             hard: hard thresholded data                  % 
%             kur: kurtosis value used in soft thresholding% 
%                                                          % 
% SUB FUNC  : none                                         % 
%                                                          % 
% Written by Hasan E. KAN                                  % 
%                                                          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [varargout]=kurtosistest(varargin); 
 
datain=varargin{1}; 
kurlim=varargin{2}; 
 
hardout=zeros(size(datain)); 
 
test=boottest(datain,'kurtosis',3,1,.05,99,25); 
if test==1 
    softout=datain; 
    hardout=datain; 
    kur=-1; 
else 
    storage=[];temp=datain; 
    kur=mean(bootstrp(99,'kurtosis',datain)); 
    while kur>kurlim 
        if length(storage)>round(length(temp)/3) 
            kur=kurlim; 
        else 
            locations=find(abs(temp)==max(abs(temp)))'; 
            storage=[storage; locations]; 
            temp(locations)=0; 
            kur=mean(bootstrp(99,'kurtosis',temp)); 
        end 
    end 
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    softout=datain*abs(3-kur)/(kurlim-3); 
    if ~isempty(storage) 
        softout(storage)=datain(storage); 
        hardout(storage)=datain(storage); 
    end 
end 
 
varargout{1} = softout; 
varargout{2} = hardout; 
varargout{3} = kur; 
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APPENDIX B. SIMULATION RESULTS 

Simulation results for the three test signal types are presented in detail in this 

Appendix. Descriptions for these test signals were given in Chapter 4. Results include 

performance criteria obtained for the MSE and distance measure defined in Chapter 4 for 

SNR levels between –6 to 6 dB, for one hundred trials per SNR level. Finally, the 

original, noisy and the recovered versions of one trial are shown for SNR values –6 dB,  

0 dB and 6 dB to provide a visual representation of the FFT-based denoising scheme. 

 

A. FFT-BASED DENOISING 

1. Sinusoidal Signal 

The frequency for the sinusoidal signal was selected randomly for each of the 100 

trials so as to generalize the simulation results. The frequency was limited to avoid 

aliasing or DC signals. Minimum and maximum allowed frequencies for the sinusoidal 

test signal in the simulations were 2/512  Hz and 241/512  Hz respectively, where the 

sampling frequency was selected as 1 Hz. Figure 13 shows the performance curves for 

FFT-based denoising scheme. These curves indicate that the thresholding schemes 

perform similarly on this type of signal. Figures 14 to 16 illustrate noisy and recovered 

versions of a sinusoidal signal at SNR values of –6 dB, 0 dB and 6 dB respectively. 
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Figure 13.   FFT-based denoising for sinusoidal signal type. 
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Figure 14.   FFT-based denoising for sinusoidal signal type, SNR=–6 dB. 
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Figure 15.   FFT-based denoising for sinusoidal signal type, SNR=0 dB. 
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Figure 16.   FFT-based denoising for sinusoidal signal type, SNR=6 dB. 
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2. Constant Amplitude Chirp Signal 

Soft and hard thresholding perform similarly according to MSE. However, the 

distance measure shows that soft thresholding outperforms hard thresholding, especially 

at low and medium SNRs. This result can be seen in Figure 17. Figures 18 to 20 illustrate 

noisy and recovered versions of a sinusoidal signal at SNR values of –6 dB, 0 dB and      

6 dB respectively. 
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Figure 17.   FFT-based denoising for constant amplitude chirp type signal. 
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Figure 18.   FFT-based denoising for constant amplitude chirp type, SNR=–6 dB. 
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Figure 19.   FFT-based denoising for constant amplitude chirp type, SNR=0 dB. 
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Figure 20.   FFT-based denoising for constant amplitude chirp type, SNR=6 dB. 
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3. Chirp with an Amplitude that Increases in an RC Time Constant  
Fashion 

The results shown in Figure 21 indicate that the thresholding schemes have 

similar MSE performances at SNR values lower than –3 dB, whereas soft thresholding 

performs better at higher SNRs. According to the distance measure d, soft thresholding is 

better at all SNR levels. Figures 22 to 24 illustrate noisy and recovered versions of a 

sinusoidal signal at SNR values of –6 dB, 0 dB and 6 dB respectively. 
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Figure 21.   FFT-based denoising for increasing amplitude chirp type signal. 
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Figure 22.   FFT-based denoising for increasing amplitude chirp type, SNR=–6 dB. 
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Figure 23.   FFT-based denoising for increasing amplitude chirp type, SNR=0 dB. 
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Figure 24.   FFT-based denoising for increasing amplitude chirp type, SNR=6 dB. 
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B. WT-BASED DENOISING 

Many different parameters affect the performance of the WT-based denoising 

scheme such as the number of decomposition levels, processing method for the 

approximation coefficients and the order of the Daubechies wavelet used. Results show 

no significant difference among the Daubechies wavelet orders considered. Only best 

results for each signal are illustrated in this section. Results shown include MSE and 

distance measure performances for SNR levels between –6 to 6 dB, where one hundred 

trials are used for each SNR level. Noisy and recovered versions of one trial are shown 

for SNR values –6 dB, 0 dB and 6 dB to provide a visual representation of the WT-based 

denoising scheme. 

1. Sinusoidal Signal 

Soft thresholding outperforms hard thresholding at low and medium SNR levels 

as shown in Figure 25. However, it does not perform as good as any of the thresholding 

methods used in the FFT-based denoising case for this signal type. Noisy and recovered 

versions of a sinusoidal signal at SNR values of –6 dB, 0 dB and 6 dB are shown in 

Figures 26 to 28. 
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Figure 25.   WT-based denoising for sinusoidal signal type, 4 level, method 2, with Daubechies 

wavelet orders 3, 4 and 5. 
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Figure 26.   WT-based denoising for sinusoidal signal type, 4 level, method 2, Daubechies wavelet 4, 

SNR=–6 dB. 
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Figure 27.   WT-based denoising for sinusoidal signal type, 4 level, method 2, Daubechies wavelet 4, 

SNR=0 dB. 
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Figure 28.   WT-based denoising for sinusoidal signal type, 4 level, method 2, Daubechies wavelet 4, 

SNR=6 dB. 
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2. Constant Amplitude Chirp 

Results in Figure 29 show that soft and hard thresholding performances are 

similar for this signal when using WT-based denoising scheme. The WT-based scheme 

performs better than the FFT-based scheme on this signal. Figures 30 to 32 illustrate 

noisy and recovered versions of a sinusoidal signal at SNR values of –6 dB, 0 dB and      

6 dB respectively. 
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Figure 29.   WT-based denoising for constant amplitude chirp type, 4 level, method 1, with 

Daubechies wavelet orders 3, 4 and 5. 
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Figure 30.   WT-based denoising for constant amplitude chirp type, 4 level, method 1, Daubechies 

wavelet 4, SNR=–6 dB. 
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Figure 31.   WT-based denoising for constant amplitude chirp type, 4 level, method 1, Daubechies 

wavelet 4, SNR=0 dB. 
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Figure 32.   WT-based denoising for constant amplitude chirp type, 4 level, method 1, Daubechies 

wavelet 4, SNR=6 dB. 
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3. Chirp with an Amplitude that Increases in an RC Time Constant 
Fashion 

Soft and hard thresholding methods perform similarly according to the 

performance criteria shown in Figure 33. WT-based denoising scheme outperforms FFT-

based denoising scheme on this signal. Figures 34 to 36 illustrate noisy and recovered 

versions of a sinusoidal signal at SNR values of –6 dB, 0 dB and 6 dB respectively. 
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Figure 33.   WT-based denoising for increasing amplitude chirp type, 4 level, method 1, with 

Daubechies wavelet orders 3, 4 and 5. 
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Figure 34.   WT-based denoising for increasing amplitude chirp type, 4 level, method 1, Daubechies 

wavelet 5, SNR=–6 dB. 
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Figure 35.   WT-based denoising for increasing amplitude chirp type, 4 level, method 1, Daubechies 

wavelet 5, SNR=0 dB. 
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Figure 36.   WT-based denoising for increasing amplitude chirp type, 4 level, method 1, Daubechies 

wavelet 5, SNR=6 dB. 
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APPENDIX C. COMPARISON WITH WAVELET SHRINKAGE 
ALGORITHM 

The proposed denoising schemes are compared with the original Wavelet 

shrinkage algorithm in this chapter. Wavelet shrinkage algorithm is a well-known 

denoising scheme. 

 

A. WAVELET SHRINKAGE ALGORITHM 

The Wavelet shrinkage algorithm was introduced by Donoho and Johnstone [16, 

17] to denoise signals embedded in additive white Gaussian noise with unit variance. 

This algorithm has three steps: 

a. Wavelet transformation. 

b. Noisy coefficients suppression by applying a non-linear thresholding 

technique. 

c. Inverse wavelet transformation. 

1. Choosing a Threshold Value 

The following four threshold selection schemes are available: 

a. Stein’s Unbiased Risk Estimator (SURE) Threshold 

The SURE threshold value is derived adaptively for each decomposition 

level by minimizing the Stein’s Unbiased Estimate of risk [18] for threshold estimates. 

b. Sqtwolog Threshold 

This method uses a fixed threshold value defined as: 

2log( ( ))T length signal= . 

c. Heursure Threshold 

This method is a mixture of the preceding two methods. It uses the 

Sqtwolog threshold at low SNR levels and the SURE threshold at medium to high SNR 

levels. 
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d. Minimax Threshold 

This method uses a fixed threshold that gives minimax performance for 

the MSE. The minimax principle is used in statistics in order to design estimators, which 

realize the minimum of the maximum mean square error obtained for the worst function 

in a given set. So, minimax threshold is the value that provides the minimum MSE 

among the worst threshold values for the detail and approximation coefficient sets. 

2. Thresholding Methods 

a. Hard Thresholding 

This method sets the coefficients with absolute values below the chosen 

threshold to zero. 

b. Soft Thresholding 

This method first sets the coefficients with absolute values below a chosen 

threshold to zero. Then, it shrinks the remaining coefficients using the relationship 

sign( )[ ],c c c T= −$  where c is the coefficient to be thresholded, c$  is the thresholded 

coefficient, and T is the chosen threshold value. 

 

B. COMPARISONS 

Simulations were performed, using the wavelet shrinkage algorithm defined 

above, on the same signals that were used for the proposed scheme. However, different 

SNR values were obtained by using constant noise power and different values for the 

signal power in this experiment, contrary to what was done in the simulations considered 

for the proposed scheme in the main body of the thesis. The Heursure method was used 

to compute the threshold values for the wavelet shrinkage algorithm. A new simulation 

was performed with the proposed scheme under the same SNR conditions as well. 

Results shown in Figures 37 to 39 indicate that the proposed WT-based denoising scheme 

performs better than the wavelet shrinkage algorithm for the sinusoidal test signal. 

However, the wavelet shrinkage algorithm outperforms the proposed scheme for the chirp 

type test signals. It should be noted that these results are restricted to the case of noise 

with unit variance. 
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1. Sinusoidal Signal 

Results shown in Figure 37 indicate that the MSE performances of the two 

denoising algorithms are similar, whereas the distance measure d shows that the proposed 

denoising scheme outperforms the wavelet shrinkage algorithm at low SNRs. 
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Figure 37.   Wavelet shrinkage algorithm and proposed WT-based denoising scheme performances 

for the sinusoidal signal type, using 3-level decomposition and Daubechies wavelet 5. 
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2. Constant Amplitude Chirp 

Both performance criteria show that the wavelet shrinkage algorithm outperforms 

the proposed denoising scheme for this signal. This can be seen in Figure 38. 
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Figure 38.   Wavelet shrinkage algorithm and proposed WT-based denoising scheme performances 

for the constant amplitude chirp type, using 4-level decomposition and Daubechies wavelet 4. 
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3. Chirp With an RC Time Constant-Like Amplitude Increase 

Both performance criteria show that the wavelet shrinkage algorithm outperforms 

the proposed denoising scheme for this signal as shown in Figure 39. 
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Figure 39.   Wavelet shrinkage algorithm and proposed WT-based denoising scheme performances 

for the increasing amplitude chirp type, using 4-level decomposition and Daubechies wavelet 5. 

 

It should be noted that the new proposed method (based on kurtosis and Bootstrap 

method) seem to be inferior to the methods described in this appendix. But the methods 

in this appendix need additional information: the variance of the noise is unity, which 

may be an unreasonable constraint in some practical applications. 
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